Datasets:
metadata
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: sentence
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 5387295926.242
num_examples: 28807
- name: test
num_bytes: 1290121556.452
num_examples: 6268
download_size: 6474496191
dataset_size: 6677417482.693999
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: apache-2.0
task_categories:
- automatic-speech-recognition
language:
- wo
size_categories:
- 10K<n<100K
Wolof Audio Dataset
The Wolof Audio Dataset is a collection of audio recordings and their corresponding transcriptions in Wolof. This dataset is designed to support the development of Automatic Speech Recognition (ASR) models for the Wolof language. It was created by combining three existing datasets:
- ALFFA: Available at serge-wilson/wolof_speech_transcription
- FLEURS: Available at vonewman/fleurs-wolof-dataset
- Urban Bus Wolof Speech Dataset: Available at vonewman/urban-bus-wolof
- Kallama Dataset: Available at Moustapha91/wolof_kalama_TTS
Dataset Description
- Language: Wolof (
wo
) - Domain: General speech and urban transportation
- Data Type: Audio recordings and transcriptions
- Audio Format: Varies (e.g., WAV, MP3)
- Sampling Rate: 16 kHz
- Total Examples: 24,346
- Training Set: 20224 examples
- Test Set: 4122 examples
Features
audio
: An audio file containing speech in Wolof.- Format: Varies (e.g., WAV, MP3)
- Sampling Rate: 16 kHz
sentence
: The textual transcription of the audio in Wolof.source
: The origin of the example, either'alffa'
,'fleurs'
,'urban_bus'
, or'kallama'
Dataset Structure
Splits
The dataset is divided into two splits:
Split | Number of Examples |
---|---|
Train | 28,807 |
Test | 6,268 |
Usage Example
Here's how to load and use this dataset with the 🤗 Datasets library:
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("vonewman/wolof-audio-data")
# Access an example from the 'train' split
print(dataset['train'][0])
# Expected output:
# {
# 'audio': {
# 'path': '.../train/audio/<audio_file>',
# 'array': array([...]),
# 'sampling_rate': 16000
# },
# 'sentence': 'Transcription of the audio in Wolof',
# 'source': 'alffa' # or 'fleurs' or 'urban_bus' or 'kallama'
# }