wolof-audio-data / README.md
vonewman's picture
Update README.md
beff3b6 verified
metadata
dataset_info:
  features:
    - name: audio
      dtype:
        audio:
          sampling_rate: 16000
    - name: sentence
      dtype: string
    - name: source
      dtype: string
  splits:
    - name: train
      num_bytes: 5387295926.242
      num_examples: 28807
    - name: test
      num_bytes: 1290121556.452
      num_examples: 6268
  download_size: 6474496191
  dataset_size: 6677417482.693999
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
license: apache-2.0
task_categories:
  - automatic-speech-recognition
language:
  - wo
size_categories:
  - 10K<n<100K

Wolof Audio Dataset

The Wolof Audio Dataset is a collection of audio recordings and their corresponding transcriptions in Wolof. This dataset is designed to support the development of Automatic Speech Recognition (ASR) models for the Wolof language. It was created by combining three existing datasets:

Dataset Description

  • Language: Wolof (wo)
  • Domain: General speech and urban transportation
  • Data Type: Audio recordings and transcriptions
  • Audio Format: Varies (e.g., WAV, MP3)
  • Sampling Rate: 16 kHz
  • Total Examples: 24,346
    • Training Set: 20224 examples
    • Test Set: 4122 examples

Features

  • audio: An audio file containing speech in Wolof.
    • Format: Varies (e.g., WAV, MP3)
    • Sampling Rate: 16 kHz
  • sentence: The textual transcription of the audio in Wolof.
  • source: The origin of the example, either 'alffa', 'fleurs', 'urban_bus', or 'kallama'

Dataset Structure

Splits

The dataset is divided into two splits:

Split Number of Examples
Train 28,807
Test 6,268

Usage Example

Here's how to load and use this dataset with the 🤗 Datasets library:

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("vonewman/wolof-audio-data")

# Access an example from the 'train' split
print(dataset['train'][0])

# Expected output:
# {
#   'audio': {
#     'path': '.../train/audio/<audio_file>',
#     'array': array([...]),
#     'sampling_rate': 16000
#   },
#   'sentence': 'Transcription of the audio in Wolof',
#   'source': 'alffa'  # or 'fleurs' or 'urban_bus' or 'kallama'
# }