fill out the readme with github version

#2
by CSquid333 - opened
Files changed (1) hide show
  1. README.md +73 -1
README.md CHANGED
@@ -9,4 +9,76 @@ tags:
9
  - code
10
  size_categories:
11
  - n<1K
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  - code
10
  size_categories:
11
  - n<1K
12
+ ---
13
+
14
+ # DafnyBench: A Benchmark for Formal Software Verification
15
+
16
+ Dataset & code for our paper [DafnyBench: A Benchmark for Formal Software Verification]()
17
+ <br>
18
+
19
+ ## Overview πŸ“Š
20
+
21
+ DafnyBench is the largest benchmark of its kind for training and evaluating machine learning systems for formal software verification, with over 750 Dafny programs.
22
+ <br><br>
23
+
24
+
25
+ ## Usage πŸ’»
26
+
27
+ - <b>Dataset</b>: The dataset for DafnyBench (with ~782 programs) could be found in the `DafnyBench` directory, which contains the `ground_truth` set & the `hints_removed`set (with compiler hints, i.e. annoataions, removed).
28
+ - <b>Evaluation</b>: Evaluate LLMs on DafnyBench by asking models to fill in missing hints in a test file from the `hints_removed` set and checking if the reconstructed program could by verified by Dafny. Please refer to the `eval` directory.
29
+ <br>
30
+
31
+
32
+ <p align="center">
33
+ <img src="assets/task_overview.jpg" width="600px"/>
34
+ </p>
35
+ <br><br>
36
+
37
+
38
+
39
+ ## Set Up for Evaluation πŸ”§
40
+
41
+ 1. Install Dafny on your machine by following [this tutorial](https://dafny.org/dafny/Installation)
42
+ 2. Clone & `cd` into this repository
43
+ 3. Set up environment by running the following lines:
44
+ ```
45
+ python -m venv stats
46
+ source stats/bin/activate
47
+ pip install -r requirements.txt
48
+ cd eval
49
+ ```
50
+ 4. Set up environment variable for the root directory:
51
+ ```
52
+ export DAFNYBENCH_ROOT=
53
+ ```
54
+ 5. Set up environment variable for path to Dafny executable on your machine (for example, `/opt/homebrew/bin/Dafny`):
55
+ ```
56
+ export DAFNY_PATH=
57
+ ```
58
+ 6. If you're evaluating an LLM through API access, set up API key. For example:
59
+ ```
60
+ export OPENAI_API_KEY=
61
+ ```
62
+ 7. You can choose to evaluate an LLM on a single test program, such as:
63
+ ```
64
+ python fill_hints.py --model "gpt-4o" --test_file "Clover_abs_no_hints.dfy" --feedback_turn 3 --dafny_path "$DAFNY_PATH"
65
+ ```
66
+ or evaluate on the entire dataset:
67
+ ```
68
+ export model_to_eval='gpt-4o'
69
+ ./run_eval.sh
70
+ ```
71
+ <br>
72
+
73
+
74
+ ## Contents πŸ“
75
+
76
+ - `DafnyBench`
77
+ - A collection of 782 Dafny programs. Each program has a `ground_truth` version that is fully verified with Dafny & a `hints_removed` version that has hints (i.e. annotations) removed
78
+ - `eval`
79
+ - Contains scripts to evaluate LLMs on DafnyBench
80
+ - `results`
81
+ - `results_summary` - Dataframes that summarize LLMs' success on every test program
82
+ - `reconstructed_files` - LLM outputs with hints filled back in
83
+ - `analysis` - Contains a notebook for analyzing the results
84
+ <br>