File size: 4,321 Bytes
d108d62
 
 
 
 
9e325d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d108d62
 
9e325d9
 
d108d62
9e325d9
 
 
 
d108d62
 
 
 
 
 
 
476d176
 
 
 
 
 
 
 
 
 
d108d62
476d176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d65d61
476d176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: size
    dtype: string
  - name: objects
    dtype: string
  - name: positive_captions
    dtype: string
  - name: negative_captions
    dtype: string
  - name: ambiguous_captions
    dtype: string
  - name: positive_objects
    dtype: string
  - name: negative_objects
    dtype: string
  - name: ambiguous_objects
    dtype: string
  splits:
  - name: train
    num_bytes: 6424085843.442
    num_examples: 38118
  - name: test
    num_bytes: 1683318047.872
    num_examples: 9658
  download_size: 8236094882
  dataset_size: 8107403891.314
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
license: mit
task_categories:
- object-detection
- image-feature-extraction
- image-to-text
language:
- en
pretty_name: HICO-DET Dataset
size_categories:
- 10K<n<100K
---

# Dataset Card for HICO-DET Dataset

## Dataset Summary

HICO-DET is a dataset for detecting human-object interactions (HOI) in images. It contains 47,776 images (38,118 in train set and 9,658 in test set), 600 HOI categories constructed by 80 object categories and 117 verb classes. HICO-DET provides more than 150k annotated human-object pairs. V-COCO provides 10,346 images (2,533 for training, 2,867 for validating and 4,946 for testing) and 16,199 person instances. Each person has annotations for 29 action categories and there are no interaction labels including objects.

- 47,776 images (38,118 in train set, 9,658 in test set)
- 600 HOI categories
- 80 object categories
- 117 verb classes
- Over 150,000 annotated human-object pairs

Originally hosted at http://www-personal.umich.edu/~ywchao/hico/, the dataset is no longer available at its official website. This Hugging Face version is a converted and restructured copy of the original dataset, which can still be found on [Google Drive](https://drive.google.com/file/d/1A1AOgIucGOkprASRBMxAPNTrXlmadYXE/view?usp=sharing) in MATLAB format.


## Dataset Structure

The dataset is structured as follows:
```
DatasetDict({
    train: Dataset({
        features: ['image', 'size', 'objects', 'positive_captions', 'negative_captions', 'ambiguous_captions', 'positive_objects', 'negative_objects', 'ambiguous_objects'],
        num_rows: 38118
    })
    test: Dataset({
        features: ['image', 'size', 'objects', 'positive_captions', 'negative_captions', 'ambiguous_captions', 'positive_objects', 'negative_objects', 'ambiguous_objects'],
        num_rows: 9658
    })
})
```
Here is the description of each column:
- `image`: the image 
- `size`: the size of the image
- `objects`: the object categories in the image
- `positive_captions`: the positive captions for the image, e.g., ('cake', 'carry') which means the image is a picture of a person carrying a cake. One image can have multiple positive captions.
- `negative_captions`: the negative captions for the image. One image can have multiple negative captions.
- `ambiguous_captions`: the ambiguous captions for the image. One image can have multiple ambiguous captions.
- `positive_objects`: the positive objects for the image. Positive objects are the index of (object, verb) pairs in `list_action.csv`.
- `negative_objects`: the negative objects for the image. Negative objects are the index of (object, verb) pairs in `list_action.csv`.
- `ambiguous_objects`: the ambiguous objects for the image. Ambiguous objects are the index of (object, verb) pairs in `list_action.csv`.

list_action.csv is a csv file that contains the list of (object, verb) pairs and some other useful information, which can be found [here](https://huggingface.co/datasets/zhimeng/hico_det/blob/main/list_action.csv).


## Usage

The most simple usage is to load the dataset with hugging face datasets.

```python
from datasets import load_dataset

dataset = load_dataset("zhimeng/hico_det")
print(dataset)
```

## File Structure

I also provide the original data structure as the following:

```
data/
    list_action.csv # 600 HOI categories
    images/
        train/
            metadata.json  # 38,118 images
            img_00001.jpg
            img_00002.jpg
            ...
        test/
            metadata.json  # 9,658 images
            img_00001.jpg
            img_00002.jpg
            ...
```