Whisper Small Ori vi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4021
  • Wer: 15.2519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.458 0.2222 100 0.4649 16.8154
0.4314 0.4444 200 0.4266 16.4319
0.4275 0.6667 300 0.4166 15.5542
0.3946 0.8889 400 0.4107 15.5764
0.2151 1.1111 500 0.4051 15.5616
0.2383 1.3333 600 0.4014 15.3551
0.2176 1.5556 700 0.3979 15.5395
0.2271 1.7778 800 0.3996 15.2371
0.222 2.0 900 0.3966 15.4141
0.1469 2.2222 1000 0.4021 15.2519

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0
Downloads last month
75
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for datdo2717/11_2

Finetuned
(2213)
this model

Dataset used to train datdo2717/11_2

Evaluation results