|
--- |
|
license: other |
|
base_model: "flux/unknown-model" |
|
tags: |
|
- flux |
|
- flux-diffusers |
|
- text-to-image |
|
- diffusers |
|
- simpletuner |
|
- safe-for-work |
|
- lora |
|
- template:sd-lora |
|
- standard |
|
inference: true |
|
widget: |
|
- text: 'unconditional (blank prompt)' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_0_0.png |
|
- text: 'A photo-realistic image of a cat' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_1_0.png |
|
--- |
|
|
|
# autotrain-07-01 |
|
|
|
This is a standard PEFT LoRA derived from [flux/unknown-model](https://huggingface.co/flux/unknown-model). |
|
|
|
|
|
The main validation prompt used during training was: |
|
``` |
|
A photo-realistic image of a cat |
|
``` |
|
|
|
|
|
## Validation settings |
|
- CFG: `3.5` |
|
- CFG Rescale: `0.0` |
|
- Steps: `28` |
|
- Sampler: `FlowMatchEulerDiscreteScheduler` |
|
- Seed: `42` |
|
- Resolution: `1024x1024` |
|
- Skip-layer guidance: |
|
|
|
Note: The validation settings are not necessarily the same as the [training settings](#training-settings). |
|
|
|
You can find some example images in the following gallery: |
|
|
|
|
|
<Gallery /> |
|
|
|
The text encoder **was not** trained. |
|
You may reuse the base model text encoder for inference. |
|
|
|
|
|
## Training settings |
|
|
|
- Training epochs: 4 |
|
- Training steps: 2000 |
|
- Learning rate: 0.0001 |
|
- Learning rate schedule: polynomial |
|
- Warmup steps: 100 |
|
- Max grad norm: 2.0 |
|
- Effective batch size: 1 |
|
- Micro-batch size: 1 |
|
- Gradient accumulation steps: 1 |
|
- Number of GPUs: 1 |
|
- Gradient checkpointing: True |
|
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all']) |
|
- Optimizer: adamw_bf16 |
|
- Trainable parameter precision: Pure BF16 |
|
- Caption dropout probability: 5.0% |
|
|
|
|
|
- LoRA Rank: 16 |
|
- LoRA Alpha: None |
|
- LoRA Dropout: 0.1 |
|
- LoRA initialisation style: default |
|
|
|
|
|
## Datasets |
|
|
|
### autotrain-256 |
|
- Repeats: 10 |
|
- Total number of images: 6 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 0.065536 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### autotrain-crop-256 |
|
- Repeats: 10 |
|
- Total number of images: 6 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 0.065536 megapixels |
|
- Cropped: True |
|
- Crop style: center |
|
- Crop aspect: square |
|
- Used for regularisation data: No |
|
### autotrain-512 |
|
- Repeats: 10 |
|
- Total number of images: 6 |
|
- Total number of aspect buckets: 2 |
|
- Resolution: 0.262144 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### autotrain-crop-512 |
|
- Repeats: 10 |
|
- Total number of images: 6 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 0.262144 megapixels |
|
- Cropped: True |
|
- Crop style: center |
|
- Crop aspect: square |
|
- Used for regularisation data: No |
|
### autotrain-768 |
|
- Repeats: 10 |
|
- Total number of images: 6 |
|
- Total number of aspect buckets: 4 |
|
- Resolution: 0.589824 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### autotrain-crop-768 |
|
- Repeats: 10 |
|
- Total number of images: 5 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 0.589824 megapixels |
|
- Cropped: True |
|
- Crop style: center |
|
- Crop aspect: square |
|
- Used for regularisation data: No |
|
### autotrain-1024 |
|
- Repeats: 10 |
|
- Total number of images: 5 |
|
- Total number of aspect buckets: 3 |
|
- Resolution: 1.048576 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### autotrain-crop-1024 |
|
- Repeats: 10 |
|
- Total number of images: 3 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 1.048576 megapixels |
|
- Cropped: True |
|
- Crop style: center |
|
- Crop aspect: square |
|
- Used for regularisation data: No |
|
|
|
|
|
## Inference |
|
|
|
|
|
```python |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
model_id = '/workspace/models/FLUX.1-dev' |
|
adapter_id = 'datnt114/autotrain-07-01' |
|
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 |
|
pipeline.load_lora_weights(adapter_id) |
|
|
|
prompt = "A photo-realistic image of a cat" |
|
|
|
|
|
## Optional: quantise the model to save on vram. |
|
## Note: The model was quantised during training, and so it is recommended to do the same during inference time. |
|
from optimum.quanto import quantize, freeze, qint8 |
|
quantize(pipeline.transformer, weights=qint8) |
|
freeze(pipeline.transformer) |
|
|
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level |
|
image = pipeline( |
|
prompt=prompt, |
|
num_inference_steps=28, |
|
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), |
|
width=1024, |
|
height=1024, |
|
guidance_scale=3.5, |
|
).images[0] |
|
image.save("output.png", format="PNG") |
|
``` |
|
|
|
|
|
|
|
|