autotrain-07-01 / README.md
datnt114's picture
Model card auto-generated by SimpleTuner
d3b7e0e verified
|
raw
history blame
4.84 kB
---
license: other
base_model: "flux/unknown-model"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- safe-for-work
- lora
- template:sd-lora
- standard
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'A photo-realistic image of a cat'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
---
# autotrain-07-01
This is a standard PEFT LoRA derived from [flux/unknown-model](https://huggingface.co/flux/unknown-model).
The main validation prompt used during training was:
```
A photo-realistic image of a cat
```
## Validation settings
- CFG: `3.5`
- CFG Rescale: `0.0`
- Steps: `28`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `1024x1024`
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 4
- Training steps: 2000
- Learning rate: 0.0001
- Learning rate schedule: polynomial
- Warmup steps: 100
- Max grad norm: 2.0
- Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 5.0%
- LoRA Rank: 16
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
## Datasets
### autotrain-256
- Repeats: 10
- Total number of images: 6
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### autotrain-crop-256
- Repeats: 10
- Total number of images: 6
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### autotrain-512
- Repeats: 10
- Total number of images: 6
- Total number of aspect buckets: 2
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### autotrain-crop-512
- Repeats: 10
- Total number of images: 6
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### autotrain-768
- Repeats: 10
- Total number of images: 6
- Total number of aspect buckets: 4
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### autotrain-crop-768
- Repeats: 10
- Total number of images: 5
- Total number of aspect buckets: 1
- Resolution: 0.589824 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### autotrain-1024
- Repeats: 10
- Total number of images: 5
- Total number of aspect buckets: 3
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### autotrain-crop-1024
- Repeats: 10
- Total number of images: 3
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = '/workspace/models/FLUX.1-dev'
adapter_id = 'datnt114/autotrain-07-01'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "A photo-realistic image of a cat"
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=28,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")
```