|
--- |
|
license: openrail++ |
|
tags: |
|
- text-to-image |
|
- PixArt-Σ |
|
--- |
|
THIS IS A REDISTRIBUTION OF PIXART-Σ-XL-256x256 |
|
|
|
### 🧨 Diffusers |
|
> [!IMPORTANT] |
|
> Make sure to upgrade diffusers to >= 0.28.0: |
|
> ```bash |
|
> pip install -U diffusers --upgrade |
|
> ``` |
|
> In addition make sure to install `transformers`, `safetensors`, `sentencepiece`, and `accelerate`: |
|
> ``` |
|
> pip install transformers accelerate safetensors sentencepiece |
|
> ``` |
|
> For `diffusers<0.28.0`, check this [script](https://github.com/PixArt-alpha/PixArt-sigma#2-integration-in-diffusers) for help. |
|
|
|
To just use the base model, you can run: |
|
|
|
```python |
|
import torch |
|
from diffusers import Transformer2DModel, PixArtSigmaPipeline |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
weight_dtype = torch.float16 |
|
|
|
pipe = PixArtSigmaPipeline.from_pretrained( |
|
"dattrong/pixart-sigma-512", |
|
torch_dtype=weight_dtype, |
|
use_safetensors=True, |
|
) |
|
pipe.to(device) |
|
|
|
# Enable memory optimizations. |
|
# pipe.enable_model_cpu_offload() |
|
|
|
prompt = "A small cactus with a happy face in the Sahara desert." |
|
image = pipe(prompt).images[0] |
|
image.save("./catcus.png") |
|
``` |
|
|
|
When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline: |
|
```py |
|
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True) |
|
``` |
|
|
|
If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload` |
|
instead of `.to("cuda")`: |
|
|
|
```diff |
|
- pipe.to("cuda") |
|
+ pipe.enable_model_cpu_offload() |
|
``` |
|
|