THIS IS A REDISTRIBUTION OF PIXART-Σ-XL-512-MS

🧨 Diffusers

Make sure to upgrade diffusers to >= 0.28.0:

pip install -U diffusers --upgrade

In addition make sure to install transformers, safetensors, sentencepiece, and accelerate:

pip install transformers accelerate safetensors sentencepiece

For diffusers<0.28.0, check this script for help.

To just use the base model, you can run:

import torch
from diffusers import Transformer2DModel, PixArtSigmaPipeline

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
weight_dtype = torch.float16

pipe = PixArtSigmaPipeline.from_pretrained(
    "dattrong/pixart-sigma-512", 
    torch_dtype=weight_dtype,
    use_safetensors=True,
)
pipe.to(device)

# Enable memory optimizations.
# pipe.enable_model_cpu_offload()

prompt = "A small cactus with a happy face in the Sahara desert."
image = pipe(prompt).images[0]
image.save("./catcus.png")

When using torch >= 2.0, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:

pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)

If you are limited by GPU VRAM, you can enable cpu offloading by calling pipe.enable_model_cpu_offload instead of .to("cuda"):

- pipe.to("cuda")
+ pipe.enable_model_cpu_offload()
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.