scandi-fine-web-cleaner

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the data-is-better-together/fineweb-c dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2847
  • F1: 0.7579
  • Precision: 0.9474
  • Recall: 0.6316

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall
0.3137 1.0 100 0.2446 0.7423 0.9 0.6316
0.1952 2.0 200 0.2550 0.7033 0.9412 0.5614
0.2102 3.0 300 0.3239 0.7368 0.9211 0.6140
0.1818 4.0 400 0.2567 0.75 0.9231 0.6316
0.1652 5.0 500 0.2847 0.7579 0.9474 0.6316
0.1127 6.0 600 0.3031 0.7551 0.9024 0.6491
0.0866 7.0 700 0.3462 0.7312 0.9444 0.5965
0.0718 8.0 800 0.3560 0.7312 0.9444 0.5965
0.0481 9.0 900 0.4467 0.7111 0.9697 0.5614
0.0387 10.0 1000 0.4223 0.7527 0.9722 0.6140
0.0177 11.0 1100 0.4376 0.7527 0.9722 0.6140
0.0142 12.0 1200 0.4857 0.7447 0.9459 0.6140
0.0099 13.0 1300 0.5207 0.7391 0.9714 0.5965

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for davanstrien/scandi-fine-web-cleaner

Finetuned
(2727)
this model