wav2vec2-xls-r-1b-scandinavian-E4-100h-30-epochs-20250124

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Wer: 100.0
  • Cer: 100.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 6000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.267 0.7819 1000 inf 47.6367 13.5610
0.5584 1.5637 2000 inf 26.4059 7.2903
0.4211 2.3456 3000 inf 23.4538 6.4409
0.5473 3.1274 4000 inf 21.6233 6.0101
0.4631 3.9093 5000 inf 21.4830 5.9161
0.2869 4.6912 6000 inf 21.6286 6.0356
0.4572 5.4730 7000 inf 22.4768 6.2442
0.2378 6.2549 8000 inf 21.7372 6.1153
0.3479 7.0367 9000 inf 22.6372 6.2812
0.368 7.8186 10000 inf 23.1700 6.3923
0.5023 8.6005 11000 inf 22.2996 6.2065
0.4695 9.3823 12000 inf 21.2941 5.9487
0.0 10.1642 13000 nan 100.0 100.0

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for davidilag/wav2vec2-xls-r-1b-scandinavian-E4-100h-30-epochs-20250124

Finetuned
(105)
this model