davidkim205's picture
Create README.md
ef36a03
|
raw
history blame
3.84 kB
metadata
language:
  - en
  - ko
pipeline_tag: text-generation

komt : korean multi task instruction tuning model

multi task instruction tuning.jpg

Recently, due to the success of ChatGPT, numerous large language models have emerged in an attempt to catch up with ChatGPT's capabilities. However, when it comes to Korean language performance, it has been observed that many models still struggle to provide accurate answers or generate Korean text effectively. This study addresses these challenges by introducing a multi-task instruction technique that leverages supervised datasets from various tasks to create training data for Large Language Models (LLMs).

Model Details

  • Model Developers : davidkim(changyeon kim)
  • Repository : https://github.com/davidkim205/komt
  • quant methods : q4_0, q4_1, q5_0, q5_1, q2_k, q3_k, q3_k_m, q3_k_l, q4_k, q4_k_s, q4_k_m, q5_k, q5_k_s, q5_k_m, q8_0, q4_0

Training

Refer https://github.com/davidkim205/komt

usage

cd llama.cpp
make -j && ./main -m ./models/komt-mistral-7b-v1/ggml-model-q4_1.gguf -p "[INST]인삼은 μ–΄λ–€ νš¨κ³Όκ°€ μžˆλŠ”κ°€μš”? [/INST]"

output

[INST]인삼은 μ–΄λ–€ νš¨κ³Όκ°€ μžˆλŠ”κ°€μš”? [/INST]μΈμ‚Όμ—λŠ” μ•½ 600개의 물질이 ν¬ν•¨λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€. κ·Έ μ€‘μ—μ„œλ„ λ§Žμ€ 연ꡬ듀을 톡해 효λŠ₯을 ν™•μΈν•œ κ²ƒμœΌλ‘œ μ•Œλ €μ§„ 3κ°€μ§€λŠ” μ•„λž˜μ™€ κ°™μŠ΅λ‹ˆλ‹€.
1. ν˜ˆμ•• 쑰절: 각쒅 μ‹€ν—˜μ—μ„œ 인삼이 ν˜ˆμ••μ„ μ‘°μ ˆν•˜λŠ”λ° 효과λ₯Ό λ‚˜νƒ€λƒˆμœΌλ©°, 특히 μ€‘κ΅­μ˜ ν•œ μ—°κ΅¬μžλ“€μ€ 인삼을 μ‚¬μš©ν•΄ 40%의 ν˜ˆμ•• κ°μ†Œλ₯Ό λ³΄μ˜€μŠ΅λ‹ˆλ‹€.
2. μœ„μž₯ κ°œμ„ : 인삼은 흉터, 톡증 λ“±μœΌλ‘œ κ³ ν†΅λ°›λŠ” μœ„μž₯ μ§ˆν™˜μ„ μΌλΆ€λ‚˜λ§ˆ κ°œμ„ ν•  수 μžˆλŠ”λ°, μ΄λŠ” 각쒅 μ‹€ν—˜λ“€μ—μ„œ ν™•μΈλœ κ²ƒμž…λ‹ˆλ‹€.
3. λ©΄μ—­ κ°•ν™”: 인삼은 면역체계λ₯Ό κ°•ν™”μ‹œν‚€λŠ”λ° νš¨κ³Όκ°€ 있으며, κ΅­λ‚΄μ—μ„œλ„ 2014λ…„λΆ€ν„°λŠ” μ‹μ•½μ²˜μ˜ μ˜μ•½μš©ν’ˆ 수좜증λͺ…μ œμ— λŒ€ν•œ μ΅œμ’…μ μΈ ν‰κ°€λ‘œ μ‚¬μš©λ˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
μœ„μ™€ 같은 효λŠ₯을 κ°–μΆ˜ 인삼은 많이 μ‚¬μš©ν•˜λŠ” κ±΄κ°•μ‹ν’ˆμ˜ μ›λ£Œλ‘œλ„ ν™œμš©λ©λ‹ˆλ‹€. [end of text]

Evaluation

For objective model evaluation, we initially used EleutherAI's lm-evaluation-harness but obtained unsatisfactory results. Consequently, we conducted evaluations using ChatGPT, a widely used model, as described in Self-Alignment with Instruction Backtranslation and Three Ways of Using Large Language Models to Evaluate Chat .

model score average(0~5) percentage
gpt-3.5-turbo(close) 147 3.97 79.45%
naver Cue(close) 140 3.78 75.67%
clova X(close) 136 3.67 73.51%
WizardLM-13B-V1.2(open) 96 2.59 51.89%
Llama-2-7b-chat-hf(open) 67 1.81 36.21%
Llama-2-13b-chat-hf(open) 73 1.91 38.37%
nlpai-lab/kullm-polyglot-12.8b-v2(open) 70 1.89 37.83%
kfkas/Llama-2-ko-7b-Chat(open) 96 2.59 51.89%
beomi/KoAlpaca-Polyglot-12.8B(open) 100 2.70 54.05%
komt-llama2-7b-v1 (open)(ours) 117 3.16 63.24%
komt-llama2-13b-v1 (open)(ours) 129 3.48 69.72%
komt-llama-30b-v1 (open)(ours) 129 3.16 63.24%
komt-mistral-7b-v1 (open)(ours) 131 3.54 70.81%