metadata
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- safe-for-work
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: >-
In the style of a James Tissot painting, a woman in a black dress with
white ruffled underlayers sits in a red chair, her posture relaxed. A
black cat rests beside her, and a vase of white flowers sits on a nearby
table. The room features a mirror and framed artwork.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
- text: >-
In the style of a James Tissot painting, two women in light blue ruffled
dresses stand in a luxurious room with large windows overlooking tropical
plants. One pours tea at a small table while another sits nearby. The room
contains ornate furniture, an intricate carpet, and a samovar.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_2_0.png
- text: >-
In the style of a James Tissot painting, a woman wearing a checkered dress
sits at a breakfast table with a carafe and fruit, reading a letter. A man
holds up a newspaper while ships are visible through large windows behind
them.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_3_0.png
- text: >-
In the style of a James Tissot painting, a young woman practices piano in
a conservatory, sunlight streaming through art nouveau windows onto her
emerald green dress. Potted orchids line the walls, and sheet music
scattered across the floor catches the late afternoon light.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_4_0.png
- text: >-
In the style of a James Tissot painting, two sisters prepare for a
masquerade ball, one adjusting the other's venetian mask while standing
before a gilt mirror. Their elaborate dresses in complementary shades of
burgundy and navy reflect in the candlelit room.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_5_0.png
- text: >-
In the style of a James Tissot painting, a lady artist works at her easel
in a sunny studio, her paint-stained apron contrasting with her formal
Victorian dress. Through the window, hot air balloons float above a
cityscape of chimneys and spires.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_6_0.png
- text: >-
In the style of a James Tissot painting, a woman astronomer in a midnight
blue Victorian dress with silver buttons studies the night sky through a
brass telescope on an observatory balcony. Her detailed skirt catches
moonlight as she leans forward, while star charts and astronomical
instruments rest on a marble-topped table nearby. Through the domed
ceiling's opening, the Pleiades cluster shimmers above.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_7_0.png
- text: >-
In the style of a James Tissot painting, an elegant Japanese geisha in a
coral and gold kimono serves tea to a Victorian lady wearing a lavender
bustle dress in a fusion parlor. Wisteria cascades through the open shoji
screens, while European oil paintings hang above Japanese tatami mats. A
peacock fan rests on a lacquered table beside an English silver tea
service.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_8_0.png
JamesTissot-Flux-LoKr
This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.
No validation prompt was used during training.
None
Validation settings
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
968x1280
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 8
- Training steps: 4750
- Learning rate: 0.0004
- Learning rate schedule: polynomial
- Warmup steps: 200
- Max grad norm: 0.1
- Effective batch size: 3
- Micro-batch size: 3
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['flux_schedule_auto_shift', 'shift=0.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_beta_schedule_alpha=10.0', 'flux_beta_schedule_beta=1.0', 'flow_matching_loss=compatible'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 10.0%
LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
Datasets
ab-512
- Repeats: 11
- Total number of images: 29
- Total number of aspect buckets: 7
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
ab-768
- Repeats: 11
- Total number of images: 29
- Total number of aspect buckets: 9
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
ab-1024
- Repeats: 5
- Total number of images: 29
- Total number of aspect buckets: 11
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
ab-crops-512
- Repeats: 7
- Total number of images: 29
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
ab-1024-crop
- Repeats: 7
- Total number of images: 29
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_repo_id = 'davidrd123/JamesTissot-Flux-LoKr'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "An astronaut is riding a horse through the jungles of Thailand."
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=968,
height=1280,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")