Tihsrah-CD commited on
Commit
6ad7434
·
1 Parent(s): 8595e5b

Improved Model Performance in V8

Browse files

The model's accuracy now stands at 0.8376, precision at 0.8744, and recall at 0.8376. The F1-score, a measure of the model's accuracy considering both precision and recall, is now 0.8478. The evaluation loss, a measure of the difference between the model's predictions and the actual values, has been reduced to 0.5616, indicating an improvement in the model's performance. During the evaluation, the model was able to process approximately 101.886 samples per second. The total runtime of the evaluation was 855.4327 seconds, with the model performing approximately 0.796 evaluation steps per second. One of the major changes in this model update was the modification of the training dataset for the NORMAL_TEXT label. We removed News articles from the dataset, which has contributed to the enhanced performance of the model.

README.md CHANGED
@@ -66,7 +66,7 @@ predicted_label = torch.argmax(probabilities, dim=-1)
66
  REPO_NAME = "daxa-ai/pebblo-classifier"
67
 
68
  # Path to the label encoder file in the repository
69
- LABEL_ENCODER_FILE = "label encoder.joblib"
70
 
71
  # Construct the URL to the label encoder file
72
  url = hf_hub_url(REPO_NAME, filename=LABEL_ENCODER_FILE)
@@ -96,9 +96,9 @@ Here are the labels along with their respective counts in the dataset:
96
  | BOARD_MEETING_AGREEMENT | 4,225 |
97
  | CONSULTING_AGREEMENT | 2,965 |
98
  | CUSTOMER_LIST_AGREEMENT | 9,000 |
99
- | DISTRIBUTION_PARTNER_AGREEMENT | 8,339 |
100
  | EMPLOYEE_AGREEMENT | 3,921 |
101
- | ENTERPRISE_AGREEMENT | 3,820 |
102
  | ENTERPRISE_LICENSE_AGREEMENT | 9,000 |
103
  | EXECUTIVE_SEVERANCE_AGREEMENT | 9,000 |
104
  | FINANCIAL_REPORT_AGREEMENT | 8,381 |
@@ -107,11 +107,11 @@ Here are the labels along with their respective counts in the dataset:
107
  | LOAN_AND_SECURITY_AGREEMENT | 9,000 |
108
  | MEDICAL_ADVICE | 2,359 |
109
  | MERGER_AGREEMENT | 7,706 |
110
- | NDA_AGREEMENT | 2,966 |
111
- | NORMAL_TEXT | 6,742 |
112
  | PATENT_APPLICATION_FILLINGS_AGREEMENT | 9,000 |
113
  | PRICE_LIST_AGREEMENT | 9,000 |
114
- | SETTLEMENT_AGREEMENT | 9,000 |
115
  | SEXUAL_HARRASSMENT | 8,321 |
116
 
117
 
@@ -141,7 +141,7 @@ Here are the labels along with their respective counts in the dataset:
141
  | MEDICAL_ADVICE | 289 |
142
  | MERGER_AGREEMENT | 7,079 |
143
  | NDA_AGREEMENT | 1,452 |
144
- | NORMAL_TEXT | 1,808 |
145
  | PATENT_APPLICATION_FILLINGS_AGREEMENT | 6,177 |
146
  | PRICE_LIST_AGREEMENT | 5,453 |
147
  | SETTLEMENT_AGREEMENT | 5,806 |
@@ -153,33 +153,37 @@ Here are the labels along with their respective counts in the dataset:
153
 
154
  | Agreement Type | precision | recall | f1-score | support |
155
  | ------------------------------------------- | --------- | ------ | -------- | ------- |
156
- | BOARD_MEETING_AGREEMENT | 0.93 | 0.95 | 0.94 | 4335 |
157
- | CONSULTING_AGREEMENT | 0.72 | 0.98 | 0.84 | 1593 |
158
- | CUSTOMER_LIST_AGREEMENT | 0.64 | 0.82 | 0.72 | 4335 |
159
- | DISTRIBUTION_PARTNER_AGREEMENT | 0.83 | 0.47 | 0.61 | 7231 |
160
- | EMPLOYEE_AGREEMENT | 0.78 | 0.92 | 0.85 | 1333 |
161
- | ENTERPRISE_AGREEMENT | 0.29 | 0.40 | 0.34 | 1616 |
162
- | ENTERPRISE_LICENSE_AGREEMENT | 0.88 | 0.79 | 0.83 | 5574 |
163
- | EXECUTIVE_SERVICE_AGREEMENT | 0.92 | 0.85 | 0.89 | 8177 |
164
- | FINANCIAL_REPORT_AGREEMENT | 0.89 | 0.98 | 0.93 | 4264 |
165
- | HARMFUL_ADVICE | 0.79 | 0.95 | 0.86 | 474 |
166
- | INTERNAL_PRODUCT_ROADMAP_AGREEMENT | 0.91 | 0.98 | 0.94 | 4116 |
167
- | LOAN_AND_SECURITY_AGREEMENT | 0.77 | 0.98 | 0.86 | 6354 |
168
- | MEDICAL_ADVICE | 0.81 | 0.99 | 0.89 | 289 |
169
- | MERGER_AGREEMENT | 0.89 | 0.77 | 0.83 | 7279 |
170
- | NDA_AGREEMENT | 0.70 | 0.57 | 0.62 | 1452 |
171
- | NORMAL_TEXT | 0.79 | 0.97 | 0.87 | 1888 |
172
  | PATENT_APPLICATION_FILLINGS_AGREEMENT | 0.95 | 0.99 | 0.97 | 6177 |
173
- | PRICE_LIST_AGREEMENT | 0.60 | 0.75 | 0.67 | 5565 |
174
- | SETTLEMENT_AGREEMENT | 0.82 | 0.54 | 0.65 | 5843 |
175
- | SEXUAL_HARASSMENT | 0.97 | 0.94 | 0.95 | 440 |
176
  | | | | | |
177
- | accuracy | | | 0.79 | 82916 |
178
- | macro avg | 0.79 | 0.83 | 0.80 | 82916 |
179
- | weighted avg | 0.83 | 0.81 | 0.81 | 82916 |
180
 
181
 
182
  #### Results
183
 
184
- The model's performance is summarized by precision, recall, and f1-score metrics, which are detailed across all 20 labels in the dataset. The accuracy stands at 0.79 for the entire test set, with a macro average and weighted average of precision, recall, and f1-score around 0.80 and 0.81, respectively.
 
 
 
 
185
 
 
66
  REPO_NAME = "daxa-ai/pebblo-classifier"
67
 
68
  # Path to the label encoder file in the repository
69
+ LABEL_ENCODER_FILE = "label_encoder.joblib"
70
 
71
  # Construct the URL to the label encoder file
72
  url = hf_hub_url(REPO_NAME, filename=LABEL_ENCODER_FILE)
 
96
  | BOARD_MEETING_AGREEMENT | 4,225 |
97
  | CONSULTING_AGREEMENT | 2,965 |
98
  | CUSTOMER_LIST_AGREEMENT | 9,000 |
99
+ | DISTRIBUTION_PARTNER_AGREEMENT | 5,162 |
100
  | EMPLOYEE_AGREEMENT | 3,921 |
101
+ | ENTERPRISE_AGREEMENT | 4,217 |
102
  | ENTERPRISE_LICENSE_AGREEMENT | 9,000 |
103
  | EXECUTIVE_SEVERANCE_AGREEMENT | 9,000 |
104
  | FINANCIAL_REPORT_AGREEMENT | 8,381 |
 
107
  | LOAN_AND_SECURITY_AGREEMENT | 9,000 |
108
  | MEDICAL_ADVICE | 2,359 |
109
  | MERGER_AGREEMENT | 7,706 |
110
+ | NDA_AGREEMENT | 5,229 |
111
+ | NORMAL_TEXT | 9,000 |
112
  | PATENT_APPLICATION_FILLINGS_AGREEMENT | 9,000 |
113
  | PRICE_LIST_AGREEMENT | 9,000 |
114
+ | SETTLEMENT_AGREEMENT | 3,754 |
115
  | SEXUAL_HARRASSMENT | 8,321 |
116
 
117
 
 
141
  | MEDICAL_ADVICE | 289 |
142
  | MERGER_AGREEMENT | 7,079 |
143
  | NDA_AGREEMENT | 1,452 |
144
+ | NORMAL_TEXT | 8,335 |
145
  | PATENT_APPLICATION_FILLINGS_AGREEMENT | 6,177 |
146
  | PRICE_LIST_AGREEMENT | 5,453 |
147
  | SETTLEMENT_AGREEMENT | 5,806 |
 
153
 
154
  | Agreement Type | precision | recall | f1-score | support |
155
  | ------------------------------------------- | --------- | ------ | -------- | ------- |
156
+ | BOARD_MEETING_AGREEMENT | 0.96 | 0.94 | 0.95 | 4335 |
157
+ | CONSULTING_AGREEMENT | 0.77 | 0.89 | 0.83 | 1533 |
158
+ | CUSTOMER_LIST_AGREEMENT | 0.84 | 0.87 | 0.85 | 4995 |
159
+ | DISTRIBUTION_PARTNER_AGREEMENT | 0.71 | 0.64 | 0.67 | 7231 |
160
+ | EMPLOYEE_AGREEMENT | 0.78 | 0.90 | 0.83 | 1433 |
161
+ | ENTERPRISE_AGREEMENT | 0.19 | 0.72 | 0.30 | 1616 |
162
+ | ENTERPRISE_LICENSE_AGREEMENT | 0.92 | 0.78 | 0.84 | 8574 |
163
+ | EXECUTIVE_SEVERANCE_AGREEMENT | 0.96 | 0.85 | 0.90 | 5177 |
164
+ | FINANCIAL_REPORT_AGREEMENT | 0.92 | 0.98 | 0.95 | 4264 |
165
+ | HARMFUL_ADVICE | 0.82 | 0.92 | 0.87 | 474 |
166
+ | INTERNAL_PRODUCT_ROADMAP_AGREEMENT | 0.94 | 0.97 | 0.96 | 4116 |
167
+ | LOAN_AND_SECURITY_AGREEMENT | 0.92 | 0.96 | 0.94 | 6354 |
168
+ | MEDICAL_ADVICE | 0.76 | 1.00 | 0.86 | 289 |
169
+ | MERGER_AGREEMENT | 0.90 | 0.55 | 0.68 | 7079 |
170
+ | NDA_AGREEMENT | 0.62 | 0.89 | 0.74 | 1452 |
171
+ | NORMAL_TEXT | 0.99 | 0.99 | 0.99 | 6049 |
172
  | PATENT_APPLICATION_FILLINGS_AGREEMENT | 0.95 | 0.99 | 0.97 | 6177 |
173
+ | PRICE_LIST_AGREEMENT | 0.81 | 0.75 | 0.78 | 5453 |
174
+ | SETTLEMENT_AGREEMENT | 0.83 | 0.73 | 0.78 | 5806 |
175
+ | SEXUAL_HARRASSMENT | 0.98 | 0.93 | 0.96 | 4750 |
176
  | | | | | |
177
+ | accuracy | | | 0.84 | 87157 |
178
+ | macro avg | 0.83 | 0.86 | 0.83 | 87157 |
179
+ | weighted avg | 0.87 | 0.84 | 0.85 | 87157 |
180
 
181
 
182
  #### Results
183
 
184
+ The models performance is summarized by precision, recall, and f1-score metrics, which are detailed across all 20 labels in the dataset. Based on the test data evaluation results, the model achieved an accuracy of 0.8376, a precision of 0.8744, and a recall of 0.8376. The F1-score, which is the harmonic mean of precision and recall, stands at 0.8478.
185
+
186
+ The evaluation loss, which measures the discrepancy between the model’s predictions and the actual values, is 0.5616. Lower loss values indicate better model performance.
187
+
188
+ The model was able to process approximately 101.886 samples per second during the evaluation, which took a total runtime of 855.4327 seconds. The model performed approximately 0.796 evaluation steps per second.
189
 
config.json CHANGED
@@ -9,54 +9,51 @@
9
  "dropout": 0.1,
10
  "hidden_dim": 3072,
11
  "id2label": {
12
- "0": "BOARD_MEETING_AGREEMENT",
13
- "1": "CONSULTING_AGREEMENT",
14
- "2": "CUSTOMER_LIST_AGREEMENT",
15
- "3": "DISTRIBUTION_PARTNER_AGREEMENT",
16
- "4": "ENTERPRISE_LICENSE_AGREEMENT",
17
- "5": "EXECUTIVE_SEVERANCE_AGREEMENT",
18
- "6": "FINANCIAL_REPORT_AGREEMENT",
19
- "7": "HARMFUL_ADVICE",
20
- "8": "INTERNAL_USE_ONLY_AGREEMENT",
21
- "9": "LOAN_AND_SECURITY_AGREEMENT",
22
- "10": "MEDICAL_ADVICE",
23
- "11": "MERGER_AGREEMENT",
24
- "12": "NDA_AGREEMENT",
25
- "13": "NORMAL_TEXT",
26
- "14": "PATENT_APPLICATION_FILLINGS_AGREEMENT",
27
- "15": "PRICE_LIST_AGREEMENT",
28
- "16": "SECRET_SAUCE_AGREEMENT",
29
- "17": "SECURITY_BREACH_AGREEMENT",
30
- "18": "SETTLEMENT_AGREEMENT",
31
- "19": "SEXUAL_HARRASSMENT_AGREEMENT",
32
- "20": "EMPLOYEE_AGREEMENT",
33
- "21": "ENTERPRISE_AGREEMENT"
34
- },
35
  "initializer_range": 0.02,
36
  "label2id": {
37
- "BOARD_MEETING_AGREEMENT": 0,
38
- "CONSULTING_AGREEMENT": 1,
39
- "MEDICAL_ADVICE": 10,
40
- "MERGER_AGREEMENT": 11,
41
- "NDA_AGREEMENT": 12,
42
- "NORMAL_TEXT": 13,
43
- "PATENT_APPLICATION_FILLINGS_AGREEMENT": 14,
44
- "PRICE_LIST_AGREEMENT": 15,
45
- "SECRET_SAUCE_AGREEMENT": 16,
46
- "SECURITY_BREACH_AGREEMENT": 17,
47
- "SETTLEMENT_AGREEMENT": 18,
48
- "SEXUAL_HARRASSMENT_AGREEMENT": 19,
49
- "CUSTOMER_LIST_AGREEMENT": 2,
50
- "EMPLOYEE_AGREEMENT": 20,
51
- "ENTERPRISE_AGREEMENT": 21,
52
- "DISTRIBUTION_PARTNER_AGREEMENT": 3,
53
- "ENTERPRISE_LICENSE_AGREEMENT": 4,
54
- "EXECUTIVE_SEVERANCE_AGREEMENT": 5,
55
- "FINANCIAL_REPORT_AGREEMENT": 6,
56
- "HARMFUL_ADVICE": 7,
57
- "INTERNAL_USE_ONLY_AGREEMENT": 8,
58
- "LOAN_AND_SECURITY_AGREEMENT": 9
59
- },
60
  "max_position_embeddings": 512,
61
  "model_type": "distilbert",
62
  "n_heads": 12,
@@ -70,4 +67,3 @@
70
  "transformers_version": "4.36.2",
71
  "vocab_size": 30522
72
  }
73
-
 
9
  "dropout": 0.1,
10
  "hidden_dim": 3072,
11
  "id2label": {
12
+
13
+ "0": "BOARD_MEETING_AGREEMENT",
14
+ "1": "CONSULTING_AGREEMENT",
15
+ "2": "CUSTOMER_LIST_AGREEMENT",
16
+ "3": "DISTRIBUTION_PARTNER_AGREEMENT",
17
+ "4": "EMPLOYEE_AGREEMENT",
18
+ "5": "ENTERPRISE_AGREEMENT",
19
+ "6": "ENTERPRISE_LICENSE_AGREEMENT",
20
+ "7": "EXECUTIVE_SEVERANCE_AGREEMENT",
21
+ "8": "FINANCIAL_REPORT_AGREEMENT",
22
+ "9": "HARMFUL_ADVICE",
23
+ "10": "INTERNAL_PRODUCT_ROADMAP_AGREEMENT",
24
+ "11": "LOAN_AND_SECURITY_AGREEMENT",
25
+ "12": "MEDICAL_ADVICE",
26
+ "13": "MERGER_AGREEMENT",
27
+ "14": "NDA_AGREEMENT",
28
+ "15": "NORMAL_TEXT",
29
+ "16": "PATENT_APPLICATION_FILLINGS_AGREEMENT",
30
+ "17": "PRICE_LIST_AGREEMENT",
31
+ "18": "SETTLEMENT_AGREEMENT",
32
+ "19": "SEXUAL_HARRASSMENT"
33
+ },
 
34
  "initializer_range": 0.02,
35
  "label2id": {
36
+ "BOARD_MEETING_AGREEMENT": 0,
37
+ "CONSULTING_AGREEMENT": 1,
38
+ "INTERNAL_PRODUCT_ROADMAP_AGREEMENT": 10,
39
+ "LOAN_AND_SECURITY_AGREEMENT": 11,
40
+ "MEDICAL_ADVICE": 12,
41
+ "MERGER_AGREEMENT": 13,
42
+ "NDA_AGREEMENT": 14,
43
+ "NORMAL_TEXT": 15,
44
+ "PATENT_APPLICATION_FILLINGS_AGREEMENT": 16,
45
+ "PRICE_LIST_AGREEMENT": 17,
46
+ "SETTLEMENT_AGREEMENT": 18,
47
+ "SEXUAL_HARRASSMENT": 19,
48
+ "CUSTOMER_LIST_AGREEMENT": 2,
49
+ "DISTRIBUTION_PARTNER_AGREEMENT": 3,
50
+ "EMPLOYEE_AGREEMENT": 4,
51
+ "ENTERPRISE_AGREEMENT": 5,
52
+ "ENTERPRISE_LICENSE_AGREEMENT": 6,
53
+ "EXECUTIVE_SEVERANCE_AGREEMENT": 7,
54
+ "FINANCIAL_REPORT_AGREEMENT": 8,
55
+ "HARMFUL_ADVICE": 9
56
+ },
 
 
57
  "max_position_embeddings": 512,
58
  "model_type": "distilbert",
59
  "n_heads": 12,
 
67
  "transformers_version": "4.36.2",
68
  "vocab_size": 30522
69
  }
 
label encoder.joblib → label_encoder.joblib RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aed62c86044052d34301175575b4ec585383ad9cf7c1177a8372e0161c1f8fb4
3
- size 1057
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:679d6eddc6f1fc6f4f4f58df6d284bf455024e8273567b22557de19dfc8753bb
3
+ size 1099
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4ce2513da6968cd9aa84adb3a032d6e3cbdd00db82da188bc31a155b32485eb1
3
- size 268216125
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c110ff2add5c7adf6aadaa01e0e14ce8e140ede610307633fb7172e066fa42fc
3
+ size 268209725