deepdml's picture
Update README.md
a22ed9f verified
metadata
language:
  - it
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small it
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: it
          split: test
          args: it
        metrics:
          - type: wer
            value: 8.644182992734926
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: it_it
          split: test
        metrics:
          - type: wer
            value: 6.69
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: facebook/multilingual_librispeech
          type: facebook/multilingual_librispeech
          config: italian
          split: test
        metrics:
          - type: wer
            value: 19.4
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: facebook/voxpopuli
          type: facebook/voxpopuli
          config: it
          split: test
        metrics:
          - type: wer
            value: 22.61
            name: WER
pipeline_tag: automatic-speech-recognition

Whisper Small it

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1960
  • Wer: 8.6442

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.2184 0.3460 1000 0.2458 11.3839
0.1863 0.6920 2000 0.2186 10.1784
0.1138 1.0381 3000 0.2049 9.1252
0.1184 1.3841 4000 0.1996 8.9385
0.1189 1.7301 5000 0.1960 8.6442

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1