DeepSeek-V2

API Platform | How to Use | License |

Paper Link👁️

DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence

1. Introduction

We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K.

In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks. The list of supported programming languages can be found here.

2. Model Downloads

We release the DeepSeek-Coder-V2 with 16B and 236B parameters based on the DeepSeekMoE framework, which has actived parameters of only 2.4B and 21B , including base and instruct models, to the public.

Model #Total Params #Active Params Context Length Download
DeepSeek-Coder-V2-Lite-Base 16B 2.4B 128k 🤗 HuggingFace
DeepSeek-Coder-V2-Lite-Instruct 16B 2.4B 128k 🤗 HuggingFace
DeepSeek-Coder-V2-Base 236B 21B 128k 🤗 HuggingFace
DeepSeek-Coder-V2-Instruct 236B 21B 128k 🤗 HuggingFace
DeepSeek-Coder-V2-Instruct-0724 236B 21B 128k 🤗 HuggingFace

3. Chat Website

You can chat with the DeepSeek-Coder-V2 on DeepSeek's official website: coder.deepseek.com

4. API Platform

We also provide OpenAI-Compatible API at DeepSeek Platform: platform.deepseek.com, and you can also pay-as-you-go at an unbeatable price.

5. How to run locally

Here, we provide some examples of how to use DeepSeek-Coder-V2-Lite model. If you want to utilize DeepSeek-Coder-V2 in BF16 format for inference, 80GB*8 GPUs are required.

Inference with Huggingface's Transformers

You can directly employ Huggingface's Transformers for model inference.

Code Completion

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Code Insertion

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
input_text = """<|fim▁begin|>def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
<|fim▁hole|>
        if arr[i] < pivot:
            left.append(arr[i])
        else:
            right.append(arr[i])
    return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])

Chat Completion

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
messages=[
    { 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
# tokenizer.eos_token_id is the id of <|end▁of▁sentence|>  token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))

The complete chat template can be found within tokenizer_config.json located in the huggingface model repository.

An example of chat template is as belows:

<|begin▁of▁sentence|>User: {user_message_1}

Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}

Assistant:

You can also add an optional system message:

<|begin▁of▁sentence|>{system_message}

User: {user_message_1}

Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}

Assistant:

Inference with vLLM (recommended)

To utilize vLLM for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 8192, 1
model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you?"}],
    [{"role": "user", "content": "write a quick sort algorithm in python."}],
    [{"role": "user", "content": "Write a piece of quicksort code in C++."}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)

5. New Features 🎉🎉🎉

Function calling

Function calling allows the model to call external tools to enhance its capabilities.

Here is an example:

# Assume that `model` and `tokenizer` are loaded
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)

tool_system_prompt = """You are a helpful Assistant.

## Tools

### Function

You have the following functions available:

- `get_current_weather`:
```json
{
    "name": "get_current_weather",
    "description": "Get the current weather in a given location",
    "parameters": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "The city and state, e.g. San Francisco, CA"
            },
            "unit": {
                "type": "string",
                "enum": [
                    "celsius",
                    "fahrenheit"
                ]
            }
        },
        "required": [
            "location"
        ]
    }
}
```"""

tool_call_messages = [{"role": "system", "content": tool_system_prompt}, {"role": "user", "content": "What's the weather like in Tokyo and Paris?"}]
tool_call_inputs = tokenizer.apply_chat_template(tool_call_messages, add_generation_prompt=True, return_tensors="pt")
tool_call_outputs = model.generate(tool_call_inputs.to(model.device))
# Generated text: '<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "Tokyo"}\n```<|tool▁call▁end|>\n<|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "Paris"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>'

# Mock response of calling `get_current_weather`
tool_messages = [{"role": "tool", "content": '{"location": "Tokyo", "temperature": "10", "unit": null}'}, {"role": "tool", "content": '{"location": "Paris", "temperature": "22", "unit": null}'}]
tool_inputs = tokenizer.apply_chat_template(tool_messages, add_generation_prompt=False, return_tensors="pt")[:, 1:]
tool_inputs = torch.cat([tool_call_outputs, tool_inputs.to(model.device)], dim=1)
tool_outputs = model.generate(tool_inputs)
# Generated text: The current weather in Tokyo is 10 degrees, and in Paris, it is 22 degrees.<|end▁of▁sentence|>

JSON output

You can use JSON Output Mode to ensure the model generates a valid JSON object. To active this mode, a special instruction should be appended to your system prompt.

# Assume that `model` and `tokenizer` are loaded
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)

user_system_prompt = 'The user will provide some exam text. Please parse the "question" and "answer" and output them in JSON format.'
json_system_prompt = f"""{user_system_prompt}

## Response Format

Reply with JSON object ONLY."""

json_messages = [{"role": "system", "content": json_system_prompt}, {"role": "user", "content": "Which is the highest mountain in the world? Mount Everest."}]
json_inputs = tokenizer.apply_chat_template(json_messages, add_generation_prompt=True, return_tensors="pt")
json_outpus = model.generate(json_inputs.to(model.device))
# Generated text: '```json\n{\n  "question": "Which is the highest mountain in the world?",\n  "answer": "Mount Everest."\n}\n```<|end▁of▁sentence|>'

FIM completion

In FIM (Fill In the Middle) completion, you can provide a prefix and an optional suffix, and the model will complete the content in between.

# Assume that `model` and `tokenizer` are loaded
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)

prefix = """def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
"""

suffix = """
        if arr[i] < pivot:
            left.append(arr[i])
        else:
            right.append(arr[i])
    return quick_sort(left) + [pivot] + quick_sort(right)"""

fim_prompt = f"<|fim▁begin|>{prefix}<|fim▁hole|>{suffix}<|fim▁end|>"
fim_inputs = tokenizer(fim_prompt, add_special_tokens=True, return_tensors="pt").input_ids
fim_outputs = model.generate(fim_inputs.to(model.device))
# Generated text: "    for i in range(1, len(arr)):<|end▁of▁sentence|>"

6. License

This code repository is licensed under the MIT License. The use of DeepSeek-Coder-V2 Base/Instruct models is subject to the Model License. DeepSeek-Coder-V2 series (including Base and Instruct) supports commercial use.

7. Contact

If you have any questions, please raise an issue or contact us at [email protected].

Downloads last month
669
Safetensors
Model size
236B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for deepseek-ai/DeepSeek-Coder-V2-Instruct-0724

Finetuned
(3)
this model
Finetunes
1 model
Quantizations
4 models

Collection including deepseek-ai/DeepSeek-Coder-V2-Instruct-0724