|
--- |
|
datasets: |
|
- squad_v2 |
|
license: cc-by-4.0 |
|
--- |
|
|
|
# bert-base-uncased for QA |
|
|
|
## Overview |
|
**Language model:** bert-base-uncased |
|
**Language:** English |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0 |
|
**Eval data:** SQuAD 2.0 |
|
**Infrastructure**: 1x Tesla v100 |
|
|
|
## Hyperparameters |
|
|
|
``` |
|
batch_size = 32 |
|
n_epochs = 3 |
|
base_LM_model = "bert-base-uncased" |
|
max_seq_len = 384 |
|
learning_rate = 3e-5 |
|
lr_schedule = LinearWarmup |
|
warmup_proportion = 0.2 |
|
doc_stride=128 |
|
max_query_length=64 |
|
``` |
|
|
|
## Performance |
|
``` |
|
"exact": 73.67977764676156 |
|
"f1": 77.87647139308865 |
|
``` |
|
|
|
## Authors |
|
- Timo M枚ller: `timo.moeller [at] deepset.ai` |
|
- Julian Risch: `julian.risch [at] deepset.ai` |
|
- Malte Pietsch: `malte.pietsch [at] deepset.ai` |
|
- Michel Bartels: `michel.bartels [at] deepset.ai` |
|
## About us |
|
![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo) |
|
We bring NLP to the industry via open source! |
|
Our focus: Industry specific language models & large scale QA systems. |
|
|
|
Some of our work: |
|
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) |
|
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) |
|
- [FARM](https://github.com/deepset-ai/FARM) |
|
- [Haystack](https://github.com/deepset-ai/haystack/) |
|
|
|
Get in touch: |
|
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) |
|
|
|
By the way: [we're hiring!](http://www.deepset.ai/jobs) |