kor-nli 및 klue-nli로 학습하였습니다.

test accuracy(KLUE-NLI): 0.889667

model_name = 'deliciouscat/kf-deberta-base-cross-nli'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3).to(device)

def encode(examples):
    return tokenizer(examples['premise'], examples['hypothesis'], truncation=True, padding='max_length', max_length=128)
Downloads last month
2
Safetensors
Model size
186M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train deliciouscat/kf-deberta-base-cross-nli