flan-t5-rouge-squad-qg-teste

This model is a fine-tuned version of google/flan-t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2811
  • Rouge1: 0.3780
  • Rouge2: 0.1245
  • Rougel: 0.3451
  • Rougelsum: 0.3611

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 100
  • eval_batch_size: 100
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 400
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 320

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
136.4029 1.0 2 34.1706 0.0568 0.0136 0.0511 0.0525
122.7505 2.0 4 30.2544 0.0921 0.0388 0.0841 0.0856
111.6999 3.0 6 27.1268 0.0847 0.0277 0.0767 0.0776
101.7543 4.0 8 24.3156 0.0923 0.0309 0.0841 0.0846
92.79 5.0 10 21.6085 0.0687 0.0215 0.0638 0.0640
84.3437 6.0 12 18.8107 0.0795 0.0285 0.0760 0.0759
75.5799 7.0 14 15.7582 0.0854 0.0381 0.0838 0.0834
66.8259 8.0 16 12.5650 0.0878 0.0385 0.0873 0.0871
57.5524 9.0 18 9.7379 0.0853 0.0421 0.0846 0.0847
49.7076 10.0 20 8.2040 0.0616 0.0317 0.0613 0.0610
43.7986 11.0 22 7.7975 0.0671 0.0333 0.0671 0.0669
39.4405 12.0 24 7.5699 0.0714 0.0343 0.0712 0.0710
36.0237 13.0 26 7.3354 0.0767 0.0355 0.0735 0.0746
33.0656 14.0 28 7.0260 0.0823 0.0341 0.0791 0.0800
30.6595 15.0 30 6.4903 0.0961 0.0430 0.0896 0.0921
28.6101 16.0 32 5.7286 0.0931 0.0439 0.0871 0.0895
26.5333 17.0 34 5.1133 0.0945 0.0425 0.0840 0.0886
24.8987 18.0 36 4.8509 0.0749 0.0347 0.0663 0.0702
23.5609 19.0 38 4.7351 0.0948 0.0397 0.0810 0.0865
22.2682 20.0 40 4.6433 0.0970 0.0364 0.0882 0.0909
21.2939 21.0 42 4.5428 0.0933 0.0362 0.0861 0.0893
20.6923 22.0 44 4.4386 0.1038 0.0434 0.0923 0.0966
19.9185 23.0 46 4.3390 0.1037 0.0434 0.0921 0.0963
19.3325 24.0 48 4.2476 0.1290 0.0597 0.1140 0.1188
18.7775 25.0 50 4.1635 0.1463 0.0675 0.1317 0.1364
18.355 26.0 52 4.0833 0.1226 0.0517 0.1079 0.1126
17.8843 27.0 54 4.0028 0.1221 0.0515 0.1074 0.1120
17.5044 28.0 56 3.9183 0.1236 0.0531 0.1085 0.1130
17.0984 29.0 58 3.8261 0.1283 0.0542 0.1117 0.1171
16.6587 30.0 60 3.7251 0.1299 0.0516 0.1109 0.1160
16.3526 31.0 62 3.6179 0.1343 0.0484 0.1132 0.1197
15.9965 32.0 64 3.5144 0.1245 0.0460 0.1045 0.1107
15.6383 33.0 66 3.4237 0.1153 0.0442 0.0961 0.1023
15.2927 34.0 68 3.3471 0.1095 0.0410 0.0923 0.0986
14.952 35.0 70 3.2823 0.1168 0.0425 0.0963 0.1039
14.6796 36.0 72 3.2252 0.1199 0.0429 0.0967 0.1039
14.348 37.0 74 3.1728 0.1268 0.0439 0.1030 0.1102
14.0301 38.0 76 3.1215 0.1240 0.0426 0.1002 0.1074
13.7341 39.0 78 3.0685 0.1144 0.0389 0.0925 0.0984
13.4513 40.0 80 3.0115 0.1266 0.0410 0.1042 0.1093
13.2648 41.0 82 2.9493 0.1460 0.0461 0.1174 0.1271
12.9909 42.0 84 2.8828 0.1246 0.0374 0.1025 0.1126
12.7199 43.0 86 2.8124 0.1438 0.0454 0.1175 0.1276
12.5336 44.0 88 2.7396 0.1159 0.0393 0.0947 0.1017
12.2522 45.0 90 2.6670 0.1056 0.0364 0.0877 0.0933
12.0999 46.0 92 2.5964 0.0973 0.0339 0.0816 0.0862
11.7929 47.0 94 2.5293 0.1209 0.0394 0.1016 0.1070
11.5615 48.0 96 2.4656 0.1326 0.0427 0.1143 0.1186
11.3999 49.0 98 2.4059 0.1275 0.0416 0.1093 0.1154
11.1484 50.0 100 2.3500 0.1266 0.0429 0.1078 0.1138
10.912 51.0 102 2.2967 0.1275 0.0454 0.1071 0.1131
10.7167 52.0 104 2.2449 0.1335 0.0444 0.1143 0.1212
10.5272 53.0 106 2.1930 0.1526 0.0495 0.1268 0.1394
10.3987 54.0 108 2.1399 0.1519 0.0508 0.1278 0.1400
10.1485 55.0 110 2.0852 0.1764 0.0631 0.1525 0.1650
9.9395 56.0 112 2.0300 0.2310 0.0768 0.2028 0.2165
9.7077 57.0 114 1.9744 0.2752 0.0896 0.2430 0.2581
9.4749 58.0 116 1.9199 0.2981 0.0930 0.2643 0.2808
9.3482 59.0 118 1.8671 0.2951 0.0923 0.2639 0.2794
9.2044 60.0 120 1.8169 0.3062 0.0951 0.2737 0.2895
8.934 61.0 122 1.7679 0.3254 0.0992 0.2933 0.3097
8.7945 62.0 124 1.7206 0.3248 0.0986 0.2933 0.3090
8.5783 63.0 126 1.6741 0.3304 0.1048 0.2950 0.3161
8.4626 64.0 128 1.6287 0.3304 0.1048 0.2950 0.3161
8.2619 65.0 130 1.5838 0.3370 0.1077 0.3019 0.3224
8.0354 66.0 132 1.5391 0.3490 0.1137 0.3112 0.3341
7.9563 67.0 134 1.4952 0.3490 0.1137 0.3112 0.3341
7.7788 68.0 136 1.4515 0.3495 0.1145 0.3133 0.3338
7.6041 69.0 138 1.4095 0.3495 0.1145 0.3133 0.3338
7.4744 70.0 140 1.3694 0.3505 0.1158 0.3167 0.3347
7.2699 71.0 142 1.3311 0.3505 0.1158 0.3167 0.3347
7.1315 72.0 144 1.2931 0.3495 0.1156 0.3171 0.3335
6.9657 73.0 146 1.2557 0.3529 0.1178 0.3214 0.3378
6.8267 74.0 148 1.2198 0.3529 0.1178 0.3214 0.3378
6.674 75.0 150 1.1844 0.3529 0.1178 0.3214 0.3378
6.5186 76.0 152 1.1501 0.3517 0.1182 0.3216 0.3365
6.3976 77.0 154 1.1153 0.3489 0.1163 0.3186 0.3340
6.2414 78.0 156 1.0817 0.3478 0.1165 0.3192 0.3335
6.0871 79.0 158 1.0495 0.3478 0.1165 0.3192 0.3335
5.991 80.0 160 1.0178 0.3518 0.1172 0.3226 0.3363
5.881 81.0 162 0.9874 0.3505 0.1154 0.3212 0.3357
5.7464 82.0 164 0.9582 0.3505 0.1154 0.3212 0.3357
5.5866 83.0 166 0.9302 0.3540 0.1152 0.3236 0.3398
5.4548 84.0 168 0.9029 0.3521 0.1150 0.3212 0.3382
5.3247 85.0 170 0.8766 0.3517 0.1128 0.3181 0.3371
5.2512 86.0 172 0.8516 0.3514 0.1128 0.3180 0.3369
5.1652 87.0 174 0.8276 0.3514 0.1128 0.3180 0.3369
4.9781 88.0 176 0.8046 0.3514 0.1128 0.3180 0.3369
4.8797 89.0 178 0.7823 0.3500 0.1128 0.3170 0.3359
4.7627 90.0 180 0.7606 0.3500 0.1128 0.3170 0.3359
4.7245 91.0 182 0.7395 0.3500 0.1128 0.3170 0.3359
4.5937 92.0 184 0.7190 0.3494 0.1129 0.3165 0.3353
4.4452 93.0 186 0.6990 0.3494 0.1129 0.3165 0.3353
4.3752 94.0 188 0.6795 0.3494 0.1129 0.3165 0.3353
4.2756 95.0 190 0.6603 0.3511 0.1135 0.3184 0.3368
4.1888 96.0 192 0.6421 0.3511 0.1135 0.3184 0.3368
4.0968 97.0 194 0.6249 0.3511 0.1135 0.3184 0.3368
4.0271 98.0 196 0.6088 0.3516 0.1134 0.3190 0.3374
3.9125 99.0 198 0.5934 0.3535 0.1133 0.3190 0.3381
3.8102 100.0 200 0.5790 0.3612 0.1153 0.3266 0.3449
3.7433 101.0 202 0.5652 0.3682 0.1176 0.3293 0.3522
3.7304 102.0 204 0.5513 0.3684 0.1172 0.3296 0.3522
3.6145 103.0 206 0.5375 0.3680 0.1172 0.3295 0.3519
3.4913 104.0 208 0.5246 0.3680 0.1172 0.3295 0.3519
3.4803 105.0 210 0.5125 0.3695 0.1192 0.3304 0.3536
3.4176 106.0 212 0.5016 0.3695 0.1192 0.3304 0.3536
3.3247 107.0 214 0.4916 0.3712 0.1214 0.3327 0.3552
3.2519 108.0 216 0.4821 0.3712 0.1214 0.3327 0.3552
3.2296 109.0 218 0.4728 0.3712 0.1215 0.3327 0.3552
3.1153 110.0 220 0.4639 0.3712 0.1215 0.3327 0.3552
3.0651 111.0 222 0.4550 0.3719 0.1223 0.3354 0.3565
2.996 112.0 224 0.4462 0.3719 0.1223 0.3354 0.3565
2.9528 113.0 226 0.4378 0.3719 0.1223 0.3354 0.3565
2.9205 114.0 228 0.4297 0.3719 0.1223 0.3354 0.3565
2.8645 115.0 230 0.4222 0.3719 0.1223 0.3354 0.3565
2.7956 116.0 232 0.4151 0.3719 0.1223 0.3354 0.3565
2.7896 117.0 234 0.4083 0.3719 0.1223 0.3354 0.3565
2.7303 118.0 236 0.4016 0.3756 0.1255 0.3380 0.3599
2.6777 119.0 238 0.3953 0.3739 0.1254 0.3371 0.3577
2.628 120.0 240 0.3896 0.3739 0.1254 0.3371 0.3577
2.5874 121.0 242 0.3841 0.3739 0.1254 0.3371 0.3577
2.5795 122.0 244 0.3792 0.3739 0.1254 0.3371 0.3577
2.5177 123.0 246 0.3746 0.3739 0.1254 0.3371 0.3577
2.497 124.0 248 0.3699 0.3739 0.1254 0.3371 0.3577
2.3974 125.0 250 0.3651 0.3754 0.1250 0.3379 0.3589
2.407 126.0 252 0.3604 0.3574 0.1162 0.3243 0.3415
2.334 127.0 254 0.3558 0.3525 0.1147 0.3212 0.3376
2.3302 128.0 256 0.3517 0.3525 0.1147 0.3212 0.3376
2.2641 129.0 258 0.3482 0.3521 0.1148 0.3210 0.3373
2.3369 130.0 260 0.3449 0.3521 0.1148 0.3210 0.3373
2.208 131.0 262 0.3419 0.3521 0.1148 0.3210 0.3373
2.235 132.0 264 0.3389 0.3504 0.1138 0.3195 0.3358
2.1496 133.0 266 0.3359 0.3501 0.1137 0.3192 0.3356
2.1326 134.0 268 0.3329 0.3534 0.1161 0.3231 0.3389
2.0632 135.0 270 0.3299 0.3524 0.1143 0.3219 0.3379
2.0522 136.0 272 0.3271 0.3532 0.1156 0.3265 0.3395
2.024 137.0 274 0.3244 0.3532 0.1156 0.3265 0.3395
2.0233 138.0 276 0.3218 0.3532 0.1156 0.3265 0.3395
2.0046 139.0 278 0.3195 0.3542 0.1154 0.3273 0.3401
1.9605 140.0 280 0.3175 0.3542 0.1154 0.3273 0.3401
1.9444 141.0 282 0.3155 0.3542 0.1154 0.3273 0.3401
1.887 142.0 284 0.3136 0.3542 0.1154 0.3273 0.3401
1.8642 143.0 286 0.3117 0.3542 0.1154 0.3273 0.3401
1.8426 144.0 288 0.3098 0.3543 0.1139 0.3278 0.3411
1.8584 145.0 290 0.3080 0.3543 0.1139 0.3278 0.3411
1.848 146.0 292 0.3063 0.3475 0.1075 0.3171 0.3314
1.8563 147.0 294 0.3046 0.3465 0.1067 0.3149 0.3305
1.7757 148.0 296 0.3031 0.3468 0.1070 0.3144 0.3307
1.7927 149.0 298 0.3017 0.3590 0.1120 0.3240 0.3408
1.7337 150.0 300 0.3004 0.3664 0.1152 0.3318 0.3477
1.7367 151.0 302 0.2992 0.3664 0.1152 0.3318 0.3477
1.7 152.0 304 0.2980 0.3647 0.1151 0.3296 0.3457
1.7166 153.0 306 0.2968 0.3874 0.1313 0.3489 0.3687
1.7134 154.0 308 0.2958 0.3874 0.1313 0.3489 0.3687
1.6819 155.0 310 0.2948 0.3871 0.1318 0.3497 0.3690
1.6897 156.0 312 0.2937 0.3883 0.1323 0.3512 0.3705
1.6723 157.0 314 0.2927 0.3932 0.1367 0.3561 0.3776
1.6442 158.0 316 0.2917 0.3930 0.1364 0.3553 0.3774
1.6524 159.0 318 0.2907 0.3930 0.1364 0.3553 0.3774
1.6028 160.0 320 0.2898 0.3930 0.1364 0.3553 0.3774
1.5867 161.0 322 0.2889 0.3928 0.1367 0.3547 0.3778
1.5755 162.0 324 0.2880 0.3928 0.1367 0.3547 0.3778
1.551 163.0 326 0.2872 0.3928 0.1367 0.3547 0.3778
1.5495 164.0 328 0.2865 0.3928 0.1367 0.3547 0.3778
1.5089 165.0 330 0.2857 0.3962 0.1368 0.3544 0.3817
1.5185 166.0 332 0.2851 0.3962 0.1368 0.3544 0.3817
1.5029 167.0 334 0.2844 0.3967 0.1376 0.3564 0.3822
1.4981 168.0 336 0.2838 0.3995 0.1381 0.3584 0.3843
1.4759 169.0 338 0.2833 0.3995 0.1381 0.3584 0.3843
1.4253 170.0 340 0.2827 0.4013 0.1378 0.3608 0.3863
1.4749 171.0 342 0.2821 0.4041 0.1386 0.3628 0.3883
1.4507 172.0 344 0.2815 0.4034 0.1368 0.3614 0.3870
1.4204 173.0 346 0.2810 0.4008 0.1351 0.3627 0.3846
1.4118 174.0 348 0.2806 0.4031 0.1369 0.3643 0.3866
1.441 175.0 350 0.2801 0.4025 0.1368 0.3637 0.3857
1.4111 176.0 352 0.2796 0.4025 0.1368 0.3637 0.3857
1.4227 177.0 354 0.2792 0.4025 0.1368 0.3637 0.3857
1.4191 178.0 356 0.2788 0.4025 0.1368 0.3637 0.3857
1.3604 179.0 358 0.2784 0.4074 0.1409 0.3674 0.3897
1.3493 180.0 360 0.2781 0.4084 0.1415 0.3687 0.3909
1.4013 181.0 362 0.2778 0.4084 0.1415 0.3687 0.3909
1.3056 182.0 364 0.2776 0.4083 0.1417 0.3693 0.3910
1.2946 183.0 366 0.2773 0.4083 0.1417 0.3693 0.3910
1.3149 184.0 368 0.2771 0.4082 0.1416 0.3688 0.3912
1.3286 185.0 370 0.2769 0.4089 0.1422 0.3701 0.3921
1.3545 186.0 372 0.2768 0.4089 0.1422 0.3701 0.3921
1.3511 187.0 374 0.2766 0.4059 0.1397 0.3677 0.3892
1.289 188.0 376 0.2763 0.4059 0.1397 0.3677 0.3892
1.2958 189.0 378 0.2760 0.4067 0.1436 0.3675 0.3888
1.2499 190.0 380 0.2758 0.4074 0.1434 0.3673 0.3895
1.2902 191.0 382 0.2755 0.4080 0.1439 0.3677 0.3901
1.2369 192.0 384 0.2753 0.4055 0.1427 0.3651 0.3874
1.2588 193.0 386 0.2751 0.4050 0.1425 0.3653 0.3871
1.2442 194.0 388 0.2749 0.4028 0.1405 0.3641 0.3853
1.2512 195.0 390 0.2747 0.4026 0.1403 0.3639 0.3851
1.2587 196.0 392 0.2746 0.4044 0.1425 0.3670 0.3873
1.2455 197.0 394 0.2744 0.4022 0.1405 0.3640 0.3854
1.2229 198.0 396 0.2743 0.4022 0.1405 0.3640 0.3854
1.2298 199.0 398 0.2743 0.4022 0.1405 0.3640 0.3854
1.2192 200.0 400 0.2743 0.4033 0.1443 0.3665 0.3858
1.2381 201.0 402 0.2742 0.4033 0.1443 0.3665 0.3858
1.2227 202.0 404 0.2742 0.4033 0.1422 0.3646 0.3855
1.1704 203.0 406 0.2741 0.4033 0.1422 0.3646 0.3855
1.1777 204.0 408 0.2740 0.4033 0.1422 0.3646 0.3855
1.1793 205.0 410 0.2739 0.4033 0.1422 0.3646 0.3855
1.1615 206.0 412 0.2739 0.4033 0.1422 0.3646 0.3855
1.1625 207.0 414 0.2737 0.4033 0.1422 0.3646 0.3855
1.1692 208.0 416 0.2735 0.4033 0.1422 0.3646 0.3855
1.1633 209.0 418 0.2734 0.4023 0.1423 0.3640 0.3849
1.173 210.0 420 0.2733 0.4019 0.1419 0.3629 0.3843
1.1762 211.0 422 0.2734 0.4010 0.1416 0.3637 0.3852
1.1551 212.0 424 0.2734 0.4010 0.1416 0.3637 0.3852
1.1332 213.0 426 0.2734 0.4010 0.1416 0.3637 0.3852
1.1336 214.0 428 0.2735 0.4010 0.1416 0.3637 0.3852
1.131 215.0 430 0.2735 0.4016 0.1421 0.3650 0.3859
1.1102 216.0 432 0.2736 0.4020 0.1422 0.3654 0.3863
1.1137 217.0 434 0.2737 0.4022 0.1417 0.3646 0.3862
1.1117 218.0 436 0.2738 0.4022 0.1417 0.3646 0.3862
1.0674 219.0 438 0.2738 0.4022 0.1417 0.3646 0.3862
1.0841 220.0 440 0.2739 0.4022 0.1417 0.3646 0.3862
1.0627 221.0 442 0.2740 0.4047 0.1426 0.3675 0.3891
1.0987 222.0 444 0.2740 0.4028 0.1463 0.3665 0.3878
1.0866 223.0 446 0.2741 0.4028 0.1463 0.3665 0.3878
1.0954 224.0 448 0.2742 0.4024 0.1457 0.3664 0.3873
1.0887 225.0 450 0.2742 0.4024 0.1457 0.3664 0.3873
1.0762 226.0 452 0.2743 0.4023 0.1456 0.3663 0.3871
1.0674 227.0 454 0.2744 0.4023 0.1456 0.3663 0.3871
1.0589 228.0 456 0.2745 0.4023 0.1456 0.3663 0.3871
1.0579 229.0 458 0.2745 0.4023 0.1456 0.3663 0.3871
1.0937 230.0 460 0.2745 0.4023 0.1456 0.3663 0.3871
1.0368 231.0 462 0.2746 0.3985 0.1421 0.3632 0.3832
1.046 232.0 464 0.2747 0.3978 0.1431 0.3643 0.3821
1.0354 233.0 466 0.2748 0.4004 0.1457 0.3665 0.3845
1.056 234.0 468 0.2750 0.3977 0.1429 0.3629 0.3803
1.0778 235.0 470 0.2750 0.3975 0.1423 0.3622 0.3803
1.0608 236.0 472 0.2750 0.3927 0.1356 0.3581 0.3774
1.036 237.0 474 0.2749 0.3927 0.1356 0.3581 0.3774
1.0253 238.0 476 0.2750 0.3918 0.1341 0.3569 0.3763
0.9875 239.0 478 0.2750 0.3918 0.1341 0.3569 0.3763
1.0579 240.0 480 0.2752 0.3918 0.1341 0.3569 0.3763
0.9842 241.0 482 0.2753 0.3918 0.1341 0.3569 0.3763
1.0336 242.0 484 0.2755 0.3962 0.1398 0.3612 0.3799
1.0015 243.0 486 0.2756 0.3973 0.1423 0.3620 0.3811
0.9859 244.0 488 0.2757 0.3973 0.1423 0.3620 0.3811
0.9978 245.0 490 0.2759 0.3974 0.1398 0.3605 0.3801
0.9882 246.0 492 0.2761 0.3940 0.1336 0.3574 0.3774
1.0113 247.0 494 0.2763 0.3945 0.1355 0.3578 0.3782
0.9862 248.0 496 0.2765 0.4011 0.1435 0.3644 0.3838
1.0085 249.0 498 0.2767 0.3993 0.1420 0.3620 0.3821
0.9885 250.0 500 0.2769 0.3993 0.1420 0.3620 0.3821
0.9985 251.0 502 0.2770 0.3993 0.1420 0.3620 0.3821
1.0008 252.0 504 0.2770 0.3999 0.1428 0.3626 0.3827
1.0024 253.0 506 0.2770 0.3987 0.1427 0.3622 0.3822
0.9853 254.0 508 0.2771 0.3981 0.1436 0.3618 0.3814
0.983 255.0 510 0.2772 0.3981 0.1436 0.3618 0.3814
0.9687 256.0 512 0.2772 0.3981 0.1436 0.3618 0.3814
0.9654 257.0 514 0.2774 0.3981 0.1436 0.3618 0.3814
0.9629 258.0 516 0.2775 0.3981 0.1436 0.3618 0.3814
0.9596 259.0 518 0.2775 0.3934 0.1418 0.3585 0.3778
0.9532 260.0 520 0.2776 0.3934 0.1418 0.3585 0.3778
0.9789 261.0 522 0.2778 0.3934 0.1418 0.3585 0.3778
0.9875 262.0 524 0.2780 0.3946 0.1418 0.3589 0.3781
0.9409 263.0 526 0.2781 0.3946 0.1418 0.3589 0.3781
0.987 264.0 528 0.2782 0.3946 0.1418 0.3589 0.3781
0.9323 265.0 530 0.2782 0.3946 0.1418 0.3589 0.3781
0.9612 266.0 532 0.2783 0.3977 0.1430 0.3605 0.3798
0.9566 267.0 534 0.2783 0.4014 0.1450 0.3659 0.3849
0.9585 268.0 536 0.2783 0.4014 0.1450 0.3659 0.3849
0.941 269.0 538 0.2784 0.4014 0.1450 0.3659 0.3849
0.9469 270.0 540 0.2784 0.4014 0.1450 0.3659 0.3849
0.9506 271.0 542 0.2785 0.4002 0.1458 0.3662 0.3847
0.9379 272.0 544 0.2787 0.4002 0.1458 0.3662 0.3847
0.9404 273.0 546 0.2788 0.4002 0.1458 0.3662 0.3847
0.9522 274.0 548 0.2789 0.4026 0.1477 0.3679 0.3870
0.9327 275.0 550 0.2791 0.4026 0.1477 0.3679 0.3870
0.9562 276.0 552 0.2792 0.3959 0.1436 0.3649 0.3802
0.9258 277.0 554 0.2794 0.3963 0.1442 0.3651 0.3807
0.9558 278.0 556 0.2795 0.3922 0.1374 0.3611 0.3767
0.9385 279.0 558 0.2796 0.3922 0.1374 0.3611 0.3767
0.916 280.0 560 0.2797 0.3922 0.1374 0.3611 0.3767
0.9133 281.0 562 0.2798 0.3922 0.1374 0.3611 0.3767
0.8924 282.0 564 0.2799 0.3922 0.1374 0.3611 0.3767
0.9046 283.0 566 0.2800 0.3973 0.1368 0.3640 0.3798
0.8985 284.0 568 0.2800 0.3973 0.1368 0.3640 0.3798
0.9491 285.0 570 0.2801 0.3973 0.1368 0.3640 0.3798
0.9297 286.0 572 0.2802 0.3973 0.1368 0.3640 0.3798
0.9058 287.0 574 0.2802 0.3980 0.1371 0.3646 0.3805
0.9199 288.0 576 0.2803 0.3980 0.1371 0.3646 0.3805
0.916 289.0 578 0.2803 0.3980 0.1371 0.3646 0.3805
0.9111 290.0 580 0.2804 0.3980 0.1371 0.3646 0.3805
0.9055 291.0 582 0.2805 0.3972 0.1376 0.3632 0.3793
0.9035 292.0 584 0.2806 0.3785 0.1250 0.3455 0.3616
0.9348 293.0 586 0.2806 0.3785 0.1250 0.3455 0.3616
0.9086 294.0 588 0.2807 0.3785 0.1250 0.3455 0.3616
0.9236 295.0 590 0.2807 0.3785 0.1250 0.3455 0.3616
0.8976 296.0 592 0.2807 0.3785 0.1250 0.3455 0.3616
0.9059 297.0 594 0.2808 0.3785 0.1250 0.3455 0.3616
0.8989 298.0 596 0.2808 0.3785 0.1250 0.3455 0.3616
0.8996 299.0 598 0.2808 0.3785 0.1250 0.3455 0.3616
0.8807 300.0 600 0.2808 0.3785 0.1250 0.3455 0.3616
0.9274 301.0 602 0.2808 0.3785 0.1250 0.3455 0.3616
0.892 302.0 604 0.2808 0.3785 0.1250 0.3455 0.3616
0.9084 303.0 606 0.2808 0.3785 0.1250 0.3455 0.3616
0.8779 304.0 608 0.2809 0.3785 0.1250 0.3455 0.3616
0.8845 305.0 610 0.2809 0.3785 0.1250 0.3455 0.3616
0.9284 306.0 612 0.2809 0.3785 0.1250 0.3455 0.3616
0.9089 307.0 614 0.2809 0.3785 0.1250 0.3455 0.3616
0.9218 308.0 616 0.2809 0.3785 0.1250 0.3455 0.3616
0.9125 309.0 618 0.2810 0.3780 0.1245 0.3451 0.3611
0.8821 310.0 620 0.2810 0.3780 0.1245 0.3451 0.3611
0.8935 311.0 622 0.2810 0.3780 0.1245 0.3451 0.3611
0.8867 312.0 624 0.2810 0.3780 0.1245 0.3451 0.3611
0.8715 313.0 626 0.2810 0.3780 0.1245 0.3451 0.3611
0.8896 314.0 628 0.2811 0.3780 0.1245 0.3451 0.3611
0.8891 315.0 630 0.2811 0.3780 0.1245 0.3451 0.3611
0.9057 316.0 632 0.2811 0.3780 0.1245 0.3451 0.3611
0.8898 317.0 634 0.2811 0.3780 0.1245 0.3451 0.3611
0.8838 318.0 636 0.2811 0.3780 0.1245 0.3451 0.3611
0.8705 319.0 638 0.2811 0.3780 0.1245 0.3451 0.3611
0.9365 320.0 640 0.2811 0.3780 0.1245 0.3451 0.3611

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
77M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for devagonal/flan-t5-rouge-squad-qg-teste

Finetuned
(311)
this model