dfurman's picture
Update README.md
415ee46 verified
metadata
license: apache-2.0
tags:
  - merge
  - mergekit
  - lazymergekit
  - NousResearch/Nous-Hermes-2-Yi-34B
  - jondurbin/bagel-dpo-34b-v0.2
base_model:
  - NousResearch/Nous-Hermes-2-Yi-34B
  - jondurbin/bagel-dpo-34b-v0.2
model-index:
  - name: HermesBagel-34B-v0.1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 70.56
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.74
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.38
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 67.34
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 84.61
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.28
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/HermesBagel-34B-v0.1
          name: Open LLM Leaderboard

HermesBagel-34B-v0.1

HermesBagel-34B-v0.1 is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: NousResearch/Nous-Hermes-2-Yi-34B
        layer_range: [0, 60]
      - model: jondurbin/bagel-dpo-34b-v0.2
        layer_range: [0, 60]
merge_method: slerp
base_model: NousResearch/Nous-Hermes-2-Yi-34B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Basic Usage

Setup
!pip install -qU transformers accelerate bitsandbytes

from transformers import (
    AutoTokenizer, 
    AutoModelForCausalLM, 
    BitsAndBytesConfig
)
import torch

model = "dfurman/HermesBagel-34B-v0.1"
nf4_config = BitsAndBytesConfig(
   load_in_4bit=True,
   bnb_4bit_quant_type="nf4",
   bnb_4bit_use_double_quant=True,
   bnb_4bit_compute_dtype=torch.bfloat16
)

tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(
    model,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=nf4_config,
)
messages = [
    {"role": "user", "content": "What is a large language model?"},
]

print("\n\n*** Prompt:")
input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    return_tensors="pt",
)
print(tokenizer.decode(input_ids[0]))

print("\n\n*** Generate:")
with torch.autocast("cuda", dtype=torch.bfloat16):
    output = model.generate(
        input_ids=input_ids.to("cuda"),
        max_new_tokens=256,
        return_dict_in_generate=True,
    )

response = tokenizer.decode(
    output["sequences"][0][len(input_ids[0]):], 
    skip_special_tokens=True
)
print(response)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.15
AI2 Reasoning Challenge (25-Shot) 70.56
HellaSwag (10-Shot) 85.74
MMLU (5-Shot) 77.38
TruthfulQA (0-shot) 67.34
Winogrande (5-shot) 84.61
GSM8k (5-shot) 65.28