Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: tiiuae/falcon-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 230b0e535b611494_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/230b0e535b611494_train_data.json
  type:
    field_input: background
    field_instruction: abstract
    field_output: full_description
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: diaenra/96ae7c9d-e269-44ae-ac8f-8e892f5e553e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_modules_to_save:
- embed_tokens
- lm_head
lora_r: 32
lora_target_linear: true
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lr_scheduler: cosine
max_memory:
  0: 70GB
micro_batch_size: 4
mlflow_experiment_name: /tmp/230b0e535b611494_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 239
sequence_len: 2048
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: diaenra-tao-miner
wandb_mode: online
wandb_name: 96ae7c9d-e269-44ae-ac8f-8e892f5e553e
wandb_project: tao
wandb_run: diaenra
wandb_runid: 96ae7c9d-e269-44ae-ac8f-8e892f5e553e
warmup_steps: 200
weight_decay: 0.1
xformers_attention: true

96ae7c9d-e269-44ae-ac8f-8e892f5e553e

This model is a fine-tuned version of tiiuae/falcon-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0451

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
5.0888 0.9991 555 1.0451

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for diaenra/96ae7c9d-e269-44ae-ac8f-8e892f5e553e

Base model

tiiuae/falcon-7b
Adapter
(194)
this model