PaliGemma
개요
PaliGemma 모델은 구글이 제안한 PaliGemma – Google의 최첨단 오픈 비전 언어 모델에서 소개 되었습니다. PaliGemma는 SigLIP 비전 인코더와 Gemma 언어 인코더로 구성된 3B 규모의 비전-언어 모델로, 두 인코더가 멀티모달 선형 프로젝션으로 연결되어 있습니다. 이 모델은 이미지를 고정된 수의 VIT토큰으로 분할하고 이를 선택적 프롬프트 앞에 추가 하며, 모든 이미지 토큰과 입력 텍스트 토큰에 대해 전체 블록 어텐션을 사용하는 특징을 가지고 있습니다.
PaliGemma는 224x224, 448x448, 896x896의 3가지 해상도로 제공되며, 3개의 기본 모델과 55개의 다양한 작업에 대해 미세 조정된 버전, 그리고 2개의 혼합 모델이 있습니다.
PaliGemma 아키텍처 블로그 포스트.이 모델은 Molbap에 의해 기여 되었습니다.
사용 팁
PaliGemma의 추론은 다음처럼 수행됩니다:
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
model_id = "google/paligemma-3b-mix-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
prompt = "What is on the flower?"
image_file = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg?download=true"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(raw_image, prompt, return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=20)
print(processor.decode(output[0], skip_special_tokens=True)[len(prompt):])
- PaliGemma는 대화용으로 설계되지 않았으며, 특정 사용 사례에 대해 미세 조정할 때 가장 잘 작동합니다. PaliGemma를 미세 조정할 수 있는 몇 가지 하위 작업에는 이미지 캡셔닝, 시각적 질문 답변(VQA), 오브젝트 디텍션, 참조 표현 분할 및 문서 이해가 포함됩니다.
- 모델에 필요한 이미지, 텍스트 및 선택적 레이블을 준비하는데
PaliGemmaProcessor
를 사용할 수 있습니다. PaliGemma 모델을 미세 조정할 때는, 프로세서에suffix
인자를 전달하여 다음 처럼 모델의labels
를 생성할 수 있습니다:
prompt = "What is on the flower?"
answer = "a bee"
inputs = processor(images=raw_image, text=prompt, suffix=answer, return_tensors="pt")
자료
PaliGemma를 시작하는 데 도움이 되는 Hugging Face와 community 자료 목록(🌎로 표시됨) 입니다.여기에 포함될 자료를 제출하고 싶으시다면 PR(Pull Request)를 열어주세요. 리뷰 해드리겠습니다! 자료는 기존 자료를 복제하는 대신 새로운 내용을 담고 있어야 합니다.
- PaliGemma의 모든 기능을 소개하는 블로그 포스트는 이곳에서 찾을 수 있습니다. 🌎
- Trainer API를 사용하여 VQA(Visual Question Answering)를 위해 PaliGemma를 미세 조정하는 방법과 추론에 대한 데모 노트북은 이곳에서 찾을 수 있습니다. 🌎
- 사용자 정의 데이터셋(영수증 이미지 -> JSON)에 대해 PaliGemma를 미세 조정하는 방법과 추론에 대한 데모 노트북은 이곳에서 찾을 수 있습니다. 🌎
PaliGemmaConfig
class transformers.PaliGemmaConfig
< source >( vision_config = None text_config = None ignore_index = -100 image_token_index = 256000 vocab_size = 257152 projection_dim = 2048 hidden_size = 2048 **kwargs )
Parameters
- vision_config (
PaliGemmaVisionConfig
, optional) — Custom vision config or dict - text_config (
Union[AutoConfig, dict]
, optional) — The config object of the text backbone. Can be any ofLlamaConfig
orMistralConfig
. - ignore_index (
int
, optional, defaults to -100) — The ignore index for the loss function. - image_token_index (
int
, optional, defaults to 256000) — The image token index to encode the image prompt. - vocab_size (
int
, optional, defaults to 257152) — Vocabulary size of the PaliGemmamodel. Defines the number of different tokens that can be represented by theinputs_ids
passed when calling ~PaliGemmaForConditionalGeneration - projection_dim (
int
, optional, defaults to 2048) — Dimension of the multimodal projection space. - hidden_size (
int
, optional, defaults to 2048) — Dimension of the hidden layer of the Language model.
This is the configuration class to store the configuration of a PaliGemmaForConditionalGeneration. It is used to instantiate an PaliGemmamodel according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the PaliGemma-2B.
e.g. paligemma-hf/paligemma-2b
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import PaliGemmaForConditionalGeneration, PaliGemmaConfig, SiglipVisionConfig, GemmaConfig
>>> # Initializing a Siglip-like vision config
>>> vision_config = SiglipVisionConfig()
>>> # Initializing a PaliGemma config
>>> text_config = GemmaConfig()
>>> # Initializing a PaliGemma paligemma-3b-224 style configuration
>>> configuration = PaliGemmaConfig(vision_config, text_config)
>>> # Initializing a model from the paligemma-3b-224 style configuration
>>> model = PaliGemmaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
PaliGemmaProcessor
class transformers.PaliGemmaProcessor
< source >( image_processor = None tokenizer = None chat_template = None **kwargs )
Parameters
- image_processor (
SiglipImageProcessor
, optional) — The image processor is a required input. - tokenizer (GemmaTokenizerFast, optional) — The tokenizer is a required input.
- chat_template (
str
, optional) — A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
Constructs a PaliGemma processor which wraps a PaliGemma image processor and a PaliGemma tokenizer into a single processor.
PaliGemmaProcessor offers all the functionalities of SiglipImageProcessor
and GemmaTokenizerFast. See the
__call__()
and decode() for more information.
This method forwards all its arguments to GemmaTokenizerFast’s batch_decode(). Please refer to the docstring of this method for more information.
This method forwards all its arguments to GemmaTokenizerFast’s decode(). Please refer to the docstring of this method for more information.
PaliGemmaForConditionalGeneration
class transformers.PaliGemmaForConditionalGeneration
< source >( config: PaliGemmaConfig )
Parameters
- config (PaliGemmaConfig or
PaliGemmaVisionConfig
) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The PALIGEMMA model which consists of a vision backbone and a language model. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: LongTensor = None pixel_values: FloatTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[typing.List[torch.FloatTensor], transformers.cache_utils.Cache, NoneType] = None token_type_ids: typing.Optional[torch.LongTensor] = None cache_position: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 ) → transformers.models.paligemma.modeling_paligemma.PaliGemmaCausalLMOutputWithPast
or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, image_size, image_size)) -- The tensors corresponding to the input images. Pixel values can be obtained using [AutoImageProcessor](/docs/transformers/main/ko/model_doc/auto#transformers.AutoImageProcessor). See [SiglipImageProcessor.__call__()](/docs/transformers/main/ko/model_doc/vit#transformers.ViTFeatureExtractor.__call__) for details ([]
PaliGemmaProcessor] uses
SiglipImageProcessor` for processing images). - attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If
past_key_values
is used, optionally only the lastdecoder_input_ids
have to be input (seepast_key_values
).If you want to change padding behavior, you should read
modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more information on the default strategy.- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]
. What are position IDs? - past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
. - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - Args —
labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional): Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.text_config.vocab_size]
or -100 (seeinput_ids
docstring). Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.text_config.vocab_size]
.logits_to_keep (
int
ortorch.Tensor
, optional): If anint
, compute logits for the lastlogits_to_keep
tokens. If0
, calculate logits for allinput_ids
(special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If atorch.Tensor
, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns
transformers.models.paligemma.modeling_paligemma.PaliGemmaCausalLMOutputWithPast
or tuple(torch.FloatTensor)
A transformers.models.paligemma.modeling_paligemma.PaliGemmaCausalLMOutputWithPast
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (PaliGemmaConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.text_config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
)Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
image_hidden_states (
torch.FloatTensor
, optional) — Atorch.FloatTensor
of size(batch_size, num_images, sequence_length, hidden_size)
. image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
The PaliGemmaForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
>>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf")
>>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf")
>>> prompt = "answer en Where is the cow standing?"
>>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"answer en Where is the cow standing?\nbeach"