TRL documentation

Generalized Knowledge Distillation Trainer

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Generalized Knowledge Distillation Trainer

Overview

Generalized Knowledge Distillation (GKD) was proposed in On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes by Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier Bachem.

The abstract from the paper is the following:

Knowledge distillation (KD) is widely used for compressing a teacher model to reduce its inference cost and memory footprint, by training a smaller student model. However, current KD methods for auto-regressive sequence models suffer from distribution mismatch between output sequences seen during training and those generated by the student during inference. To address this issue, we introduce Generalized Knowledge Distillation (GKD). Instead of solely relying on a fixed set of output sequences, GKD trains the student on its self-generated output sequences by leveraging feedback from the teacher on such sequences. Unlike supervised KD approaches, GKD also offers the flexibility to employ alternative loss functions between the student and teacher, which can be useful when the student lacks the expressivity to mimic the teacher’s distribution. Furthermore, GKD facilitates the seamless integration of distillation with RL fine-tuning (RLHF). We demonstrate the efficacy of GKD for distilling auto-regressive language models on summarization, translation, and arithmetic reasoning tasks, and task-agnostic distillation for instruction-tuning.

The key aspects of GKD are:

  1. It addresses the train-inference distribution mismatch in auto-regressive sequence models by training the student model on its self-generated output sequences.
  2. GKD allows flexibility in choosing different divergence measures between student and teacher models via the generalized Jensen-Shannon Divergence (JSD), which can be useful when the student lacks the capacity to fully mimic the teacher.

This post-training method was contributed by Kashif Rasul and Lewis Tunstall.

Usage tips

The GKDTrainer is a wrapper around the SFTTrainer class that takes in a teacher model argument. It needs three parameters to be set via the GKDConfig namely:

  • lmbda: controls the student data fraction, i.e., the proportion of on-policy student-generated outputs. When lmbda=0.0, the loss reduces to supervised JSD where the student is trained with the token-level probabilities of the teacher. When lmbda=1.0, the loss reduces to on-policy JSD, where the student generates output sequences and token-specific feedback on these sequences from the teacher. For values in between [0, 1] it is random between the two based on the lmbda value for each batch.
  • seq_kd: controls whether to perform Sequence-Level KD (can be viewed as supervised FT on teacher-generated out). When seq_kd=True and lmbda=0.0, the loss reduces to supervised JSD, where the teacher generates output sequences and the student receives token-specific feedback on these sequences from the teacher.
  • beta: controls the interpolation in the generalized Jensen-Shannon Divergence. When beta=0.0 the loss approximates forward KL divergence, while for beta=1.0 the loss approximates reverse KL divergence. For values in between [0, 1] it interpolates between the two.

The authors find that on-policy data (high lmbda) performs better and the optimal beta varied depending on the task and evaluation method.

Make sure that attn_implementation="flash_attention_2" when training Gemma models. Otherwise you will encounter NaNs in the logits due to the soft capping technique adopted by this architecture.

The basic API is as follows:

from datasets import Dataset
from trl import GKDConfig, GKDTrainer
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
)

NUM_DUMMY_SAMPLES = 100

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
# The model to optimise
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
# The teacher model to calculate the KL divergence against
teacher_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-1.5B-Instruct")

train_dataset = Dataset.from_dict(
    {
        "messages": [
            [
                {"role": "user", "content": "Hi, how are you?"},
                {"role": "assistant", "content": "I'm great thanks"},
            ]
        ]
        * NUM_DUMMY_SAMPLES
    }
)
eval_dataset = Dataset.from_dict(
    {
        "messages": [
            [
                {"role": "user", "content": "What colour is the sky?"},
                {"role": "assistant", "content": "The sky is blue"},
            ]
        ]
        * NUM_DUMMY_SAMPLES
    }
)

training_args = GKDConfig(output_dir="gkd-model", per_device_train_batch_size=1)
trainer = GKDTrainer(
    model=model,
    teacher_model=teacher_model,
    args=training_args,
    processing_class=tokenizer,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
)
trainer.train()

Expected dataset type

The dataset should be formatted as a list of “messages” where each message is a list of dictionaries with the following keys:

  • role: either system, assistant or user
  • content: the message content

GKDTrainer

class trl.GKDTrainer

< >

( model: typing.Union[transformers.modeling_utils.PreTrainedModel, torch.nn.modules.module.Module, str, NoneType] = None teacher_model: typing.Union[transformers.modeling_utils.PreTrainedModel, torch.nn.modules.module.Module, str] = None args: typing.Optional[trl.trainer.gkd_config.GKDConfig] = None data_collator: typing.Optional[transformers.data.data_collator.DataCollator] = None train_dataset: typing.Optional[datasets.arrow_dataset.Dataset] = None eval_dataset: typing.Union[datasets.arrow_dataset.Dataset, dict[str, datasets.arrow_dataset.Dataset], NoneType] = None processing_class: typing.Union[transformers.tokenization_utils_base.PreTrainedTokenizerBase, transformers.image_processing_utils.BaseImageProcessor, transformers.feature_extraction_utils.FeatureExtractionMixin, transformers.processing_utils.ProcessorMixin, NoneType] = None model_init: typing.Optional[typing.Callable[[], transformers.modeling_utils.PreTrainedModel]] = None compute_metrics: typing.Optional[typing.Callable[[transformers.trainer_utils.EvalPrediction], dict]] = None callbacks: typing.Optional[list[transformers.trainer_callback.TrainerCallback]] = None optimizers: tuple = (None, None) preprocess_logits_for_metrics: typing.Optional[typing.Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None peft_config: typing.Optional[ForwardRef('PeftConfig')] = None formatting_func: typing.Optional[typing.Callable] = None )

generalized_jsd_loss

< >

( student_logits teacher_logits labels = None beta = 0.5 temperature = 1.0 reduction = 'batchmean' ) loss

Parameters

  • student_logits — Tensor of shape (batch_size, sequence_length, vocab_size)
  • teacher_logits — Tensor of shape (batch_size, sequence_length, vocab_size)
  • labels — Tensor of shape (batch_size, sequence_length) with -100 for padding tokens to ignore when computing loss
  • beta — Interpolation coefficient between 0 and 1 (default: 0.5)
  • temperature — Softmax temperature (default: 1.0)
  • reduction — Specifies the reduction to apply to the output (default: ‘batchmean’)

Returns

loss

Scalar tensor with the generalized JSD loss

Compute the generalized Jensen-Shannon Divergence loss for knowledge distillation using F.kl_div. See Eq. (1) of https://huggingface.co/papers/2306.13649 for the definition.

training_step

< >

( model: Module inputs: dict num_items_in_batch: typing.Optional[int] = None )

Perform a training step for the Generalized Knowledge Distillation (GKD) model.

This method implements the on-policy learning approach described in the GKD paper. With probability self.lmbda, it generates new responses using the student model, which are then used for training instead of the original inputs.

GKDConfig

class trl.GKDConfig

< >

( output_dir: str overwrite_output_dir: bool = False do_train: bool = False do_eval: bool = False do_predict: bool = False eval_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'no' prediction_loss_only: bool = False per_device_train_batch_size: int = 8 per_device_eval_batch_size: int = 8 per_gpu_train_batch_size: typing.Optional[int] = None per_gpu_eval_batch_size: typing.Optional[int] = None gradient_accumulation_steps: int = 1 eval_accumulation_steps: typing.Optional[int] = None eval_delay: typing.Optional[float] = 0 torch_empty_cache_steps: typing.Optional[int] = None learning_rate: float = 2e-05 weight_decay: float = 0.0 adam_beta1: float = 0.9 adam_beta2: float = 0.999 adam_epsilon: float = 1e-08 max_grad_norm: float = 1.0 num_train_epochs: float = 3.0 max_steps: int = -1 lr_scheduler_type: typing.Union[transformers.trainer_utils.SchedulerType, str] = 'linear' lr_scheduler_kwargs: typing.Union[dict, str, NoneType] = <factory> warmup_ratio: float = 0.0 warmup_steps: int = 0 log_level: typing.Optional[str] = 'passive' log_level_replica: typing.Optional[str] = 'warning' log_on_each_node: bool = True logging_dir: typing.Optional[str] = None logging_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = 'steps' logging_first_step: bool = False logging_steps: float = 500 logging_nan_inf_filter: bool = True save_strategy: typing.Union[transformers.trainer_utils.SaveStrategy, str] = 'steps' save_steps: float = 500 save_total_limit: typing.Optional[int] = None save_safetensors: typing.Optional[bool] = True save_on_each_node: bool = False save_only_model: bool = False restore_callback_states_from_checkpoint: bool = False no_cuda: bool = False use_cpu: bool = False use_mps_device: bool = False seed: int = 42 data_seed: typing.Optional[int] = None jit_mode_eval: bool = False use_ipex: bool = False bf16: bool = False fp16: bool = False fp16_opt_level: str = 'O1' half_precision_backend: str = 'auto' bf16_full_eval: bool = False fp16_full_eval: bool = False tf32: typing.Optional[bool] = None local_rank: int = -1 ddp_backend: typing.Optional[str] = None tpu_num_cores: typing.Optional[int] = None tpu_metrics_debug: bool = False debug: typing.Union[str, typing.List[transformers.debug_utils.DebugOption]] = '' dataloader_drop_last: bool = False eval_steps: typing.Optional[float] = None dataloader_num_workers: int = 0 dataloader_prefetch_factor: typing.Optional[int] = None past_index: int = -1 run_name: typing.Optional[str] = None disable_tqdm: typing.Optional[bool] = None remove_unused_columns: typing.Optional[bool] = True label_names: typing.Optional[typing.List[str]] = None load_best_model_at_end: typing.Optional[bool] = False metric_for_best_model: typing.Optional[str] = None greater_is_better: typing.Optional[bool] = None ignore_data_skip: bool = False fsdp: typing.Union[typing.List[transformers.trainer_utils.FSDPOption], str, NoneType] = '' fsdp_min_num_params: int = 0 fsdp_config: typing.Union[dict, str, NoneType] = None fsdp_transformer_layer_cls_to_wrap: typing.Optional[str] = None accelerator_config: typing.Union[dict, str, NoneType] = None deepspeed: typing.Union[dict, str, NoneType] = None label_smoothing_factor: float = 0.0 optim: typing.Union[transformers.training_args.OptimizerNames, str] = 'adamw_torch' optim_args: typing.Optional[str] = None adafactor: bool = False group_by_length: bool = False length_column_name: typing.Optional[str] = 'length' report_to: typing.Union[NoneType, str, typing.List[str]] = None ddp_find_unused_parameters: typing.Optional[bool] = None ddp_bucket_cap_mb: typing.Optional[int] = None ddp_broadcast_buffers: typing.Optional[bool] = None dataloader_pin_memory: bool = True dataloader_persistent_workers: bool = False skip_memory_metrics: bool = True use_legacy_prediction_loop: bool = False push_to_hub: bool = False resume_from_checkpoint: typing.Optional[str] = None hub_model_id: typing.Optional[str] = None hub_strategy: typing.Union[transformers.trainer_utils.HubStrategy, str] = 'every_save' hub_token: typing.Optional[str] = None hub_private_repo: typing.Optional[bool] = None hub_always_push: bool = False gradient_checkpointing: bool = False gradient_checkpointing_kwargs: typing.Union[dict, str, NoneType] = None include_inputs_for_metrics: bool = False include_for_metrics: typing.List[str] = <factory> eval_do_concat_batches: bool = True fp16_backend: str = 'auto' evaluation_strategy: typing.Union[transformers.trainer_utils.IntervalStrategy, str] = None push_to_hub_model_id: typing.Optional[str] = None push_to_hub_organization: typing.Optional[str] = None push_to_hub_token: typing.Optional[str] = None mp_parameters: str = '' auto_find_batch_size: bool = False full_determinism: bool = False torchdynamo: typing.Optional[str] = None ray_scope: typing.Optional[str] = 'last' ddp_timeout: typing.Optional[int] = 1800 torch_compile: bool = False torch_compile_backend: typing.Optional[str] = None torch_compile_mode: typing.Optional[str] = None dispatch_batches: typing.Optional[bool] = None split_batches: typing.Optional[bool] = None include_tokens_per_second: typing.Optional[bool] = False include_num_input_tokens_seen: typing.Optional[bool] = False neftune_noise_alpha: typing.Optional[float] = None optim_target_modules: typing.Union[NoneType, str, typing.List[str]] = None batch_eval_metrics: bool = False eval_on_start: bool = False use_liger_kernel: typing.Optional[bool] = False eval_use_gather_object: typing.Optional[bool] = False average_tokens_across_devices: typing.Optional[bool] = False dataset_text_field: str = 'text' packing: bool = False max_seq_length: typing.Optional[int] = None dataset_num_proc: typing.Optional[int] = None dataset_batch_size: int = 1000 model_init_kwargs: typing.Optional[dict[str, typing.Any]] = None dataset_kwargs: typing.Optional[dict[str, typing.Any]] = None eval_packing: typing.Optional[bool] = None num_of_sequences: int = 1024 chars_per_token: float = 3.6 use_liger: bool = False temperature: float = 0.9 lmbda: float = 0.5 beta: float = 0.5 max_new_tokens: int = 128 teacher_model_name_or_path: typing.Optional[str] = None teacher_model_init_kwargs: typing.Optional[dict[str, typing.Any]] = None disable_dropout: bool = True seq_kd: bool = False )

Parameters

  • temperature (float, optional, defaults to 0.9) — Temperature for sampling. The higher the temperature, the more random the completions.
  • lmbda (float, optional, defaults to 0.5) — Lambda parameter that controls the student data fraction (i.e., the proportion of on-policy student-generated outputs).
  • beta (float, optional, defaults to 0.5) — Interpolation coefficient between 0.0 and 1.0 of the Generalized Jensen-Shannon Divergence loss. When beta is 0.0, the loss is the KL divergence. When beta is 1.0, the loss is the Inverse KL Divergence.
  • max_new_tokens (int, optional, defaults to 128) — Maximum number of tokens to generate per completion.
  • teacher_model_name_or_path (Optional[str], optional, defaults to None) — Model name or path of the teacher model. If None, the teacher model will be the same as the model being trained.
  • teacher_model_init_kwargs (Optional[dict[str, Any]], optional, defaults to None) — Keyword arguments to pass to AutoModelForCausalLM.from_pretrained when instantiating the teacher model from a string.
  • disable_dropout (bool, optional, defaults to True) — Whether or not to disable dropouts in model.
  • seq_kd (bool, optional, defaults to False) — Seq_kd parameter that controls whether to perform Sequence-Level KD (can be viewed as supervised FT on teacher-generated output).

Configuration class for GKDTrainer.

< > Update on GitHub