See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 35a9e0283c704057_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/35a9e0283c704057_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: dsakerkwq/551d816b-3c5a-4bcc-83e3-f68a57828214
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/35a9e0283c704057_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 551d816b-3c5a-4bcc-83e3-f68a57828214
wandb_project: Gradients-On-Demand
wandb_runid: 551d816b-3c5a-4bcc-83e3-f68a57828214
warmup_steps: 100
weight_decay: 0.01
xformers_attention: false
551d816b-3c5a-4bcc-83e3-f68a57828214
This model is a fine-tuned version of zake7749/gemma-2-2b-it-chinese-kyara-dpo on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8571
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.0339 | 0.0007 | 1 | 3.9516 |
3.0085 | 0.0020 | 3 | 3.9458 |
3.0973 | 0.0040 | 6 | 3.9202 |
3.0628 | 0.0060 | 9 | 3.8294 |
2.9805 | 0.0080 | 12 | 3.6536 |
2.8508 | 0.0100 | 15 | 3.4703 |
2.7599 | 0.0121 | 18 | 3.3247 |
2.841 | 0.0141 | 21 | 3.1959 |
2.8249 | 0.0161 | 24 | 3.0669 |
2.715 | 0.0181 | 27 | 2.9560 |
2.8028 | 0.0201 | 30 | 2.8571 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Model tree for dsakerkwq/551d816b-3c5a-4bcc-83e3-f68a57828214
Base model
google/gemma-2-2b
Finetuned
google/gemma-2-2b-it
Finetuned
zake7749/gemma-2-2b-it-chinese-kyara-dpo