Zabantu - Sepedi

This is a variant of Zabantu pre-trained on a monolingual dataset of Sepedi(nso) sentences on a transformer network with 120 million traininable parameters.

Usage Example(s)

from transformers import pipeline

# Initialize the pipeline for masked language model
unmasker = pipeline('fill-mask', model='dsfsi/zabantu-nso-120m')

# The Sepedi sentence with a masked token
sample_sentences = ["mopresidente wa <mask> wa afrika-borwa",   # original token: maloba
"bašomedi ba polase ya dinamune ya zebediela citrus ba hlomile magato a <mask> malebana le go se sepetšwe botse ga dilo ka polaseng eo."  # original token: boipelaetšo
]

# Perform the fill-mask task
results = unmasker(sentence)

# Display the results
for result in results:
    print(f"Predicted word: {result['token_str']} - Score: {result['score']}")
    print(f"Full sentence: {result['sequence']}\n")
    print("=" * 80)
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using dsfsi/zabantu-nso-120m 2