|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: mental/mental-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: mental-roberta_stress_classification |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mental-roberta_stress_classification |
|
|
|
This model is a fine-tuned version of [mental/mental-roberta-base](https://huggingface.co/mental/mental-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7029 |
|
- Accuracy: 0.5 |
|
- F1: 0.3333 |
|
- Precision: 0.25 |
|
- Recall: 0.5 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.6983 | 1.0 | 48000 | 0.7029 | 0.5 | 0.3333 | 0.25 | 0.5 | |
|
| 0.7189 | 2.0 | 96000 | 0.7414 | 0.5 | 0.3333 | 0.25 | 0.5 | |
|
| 0.5927 | 3.0 | 144000 | 0.7370 | 0.5 | 0.3333 | 0.25 | 0.5 | |
|
| 0.6274 | 4.0 | 192000 | 0.7668 | 0.5 | 0.3333 | 0.25 | 0.5 | |
|
| 0.6622 | 5.0 | 240000 | 0.7478 | 0.5 | 0.3333 | 0.25 | 0.5 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.2 |
|
|