dstefa's picture
End of training
3febe01 verified
|
raw
history blame
1.99 kB
---
license: cc-by-nc-4.0
base_model: mental/mental-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: mental-roberta_stress_classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mental-roberta_stress_classification
This model is a fine-tuned version of [mental/mental-roberta-base](https://huggingface.co/mental/mental-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7029
- Accuracy: 0.5
- F1: 0.3333
- Precision: 0.25
- Recall: 0.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6983 | 1.0 | 48000 | 0.7029 | 0.5 | 0.3333 | 0.25 | 0.5 |
| 0.7189 | 2.0 | 96000 | 0.7414 | 0.5 | 0.3333 | 0.25 | 0.5 |
| 0.5927 | 3.0 | 144000 | 0.7370 | 0.5 | 0.3333 | 0.25 | 0.5 |
| 0.6274 | 4.0 | 192000 | 0.7668 | 0.5 | 0.3333 | 0.25 | 0.5 |
| 0.6622 | 5.0 | 240000 | 0.7478 | 0.5 | 0.3333 | 0.25 | 0.5 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2