Model Card for Model ID

This model is a small timm/vit_base_patch16_224.orig_in21k_ft_in1k trained on cifar100.

  • Test Accuracy: 0.9316
  • License: MIT

How to Get Started with the Model

Use the code below to get started with the model.

import timm
import torch
from torch import nn

model = timm.create_model("timm/vit_base_patch16_224.orig_in21k_ft_in1k",
pretrained=False)
model.head = nn.Linear(model.head.in_features, 100)
model.load_state_dict(
    torch.hub.load_state_dict_from_url(
        "https://huggingface.co/edadaltocg/vit_base_patch16_224_in21k_ft_cifar100/resolve/main/pytorch_model.bin",
        map_location="cpu",
        file_name="vit_base_patch16_224_in21k_ft_cifar100.pth",
    )
)

Training Data

Training data is cifar100.

Training Hyperparameters

  • config: scripts/train_configs/ft_cifar100.json

  • model: vit_base_patch16_224_in21k_ft_cifar100

  • dataset: cifar100

  • batch_size: 64

  • epochs: 10

  • validation_frequency: 1

  • seed: 1

  • criterion: CrossEntropyLoss

  • criterion_kwargs: {}

  • optimizer: SGD

  • lr: 0.01

  • optimizer_kwargs: {'momentum': 0.9, 'weight_decay': 0.0}

  • scheduler: CosineAnnealingLR

  • scheduler_kwargs: {'T_max': 10}

  • debug: False

Testing Data

Testing data is cifar100.


This model card was created by Eduardo Dadalto.

Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train edadaltocg/vit_base_patch16_224_in21k_ft_cifar100

Evaluation results