Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Yarn-Llama-2-7b-64k
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - a8441b4a41cc290d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/a8441b4a41cc290d_train_data.json
  type:
    field_instruction: query
    field_output: answer
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: eddysang/958cb5bc-6f38-455e-b94a-4ee23d1ec44d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/a8441b4a41cc290d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: yaudayah0
wandb_mode: online
wandb_name: 61bd26b7-40d4-4733-9f40-2e622ae7461e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 61bd26b7-40d4-4733-9f40-2e622ae7461e
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false

958cb5bc-6f38-455e-b94a-4ee23d1ec44d

This model is a fine-tuned version of NousResearch/Yarn-Llama-2-7b-64k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1663

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 87

Training results

Training Loss Epoch Step Validation Loss
No log 0.0346 1 2.1227
70.8824 0.2768 8 1.4606
25.0508 0.5535 16 0.7043
14.8069 0.8303 24 0.4815
11.5617 1.1114 32 0.3749
8.9133 1.3881 40 0.2935
7.4285 1.6649 48 0.2495
6.1086 1.9416 56 0.2113
3.8509 2.2227 64 0.1919
3.7211 2.4995 72 0.1741
3.27 2.7762 80 0.1663

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for eddysang/958cb5bc-6f38-455e-b94a-4ee23d1ec44d

Adapter
(181)
this model