This model was trained on a new dataset composed of available poems by Anne Bradstreet hosted by Public Domain Poetry. Specifically I downloaded all 40 poems and fine-tuned a bert-base-uncased text classification model on Amazon SageMaker. For the negative class, I actually generated GPT-2 samples of length 70. That is to say, for each line of Bradstreet I generated a generic GPT-2 reposes. I considered these responses my negative class.

In the classifier, I had a total of 6947 positive lines written by Anne Bradstreet, and 5219 lines generated by GPT-2 in response, totally a dataset of 12,166 labeled lines. I used only the GPT-2 responses in the training set, keeping the actual Bradstreet lines in the positive samples alone.

I split the train and test set in 80/20, leaving a total of 9732 labeled samples in training, and 2435 samples in test.

These I trained on SageMaker, using the Hugging Face deep learning container. I also used SageMaker Training Compiler, which achieved 64 samples per batch on an ml.p3.2xlarge. After 42 minutes of training, on only 5 epochs, I achieved a train loss of 0.0714. Test loss is forthcoming.

In my own tests, the model seems to be always very confident. That is to say, it routinely gives a confidence score of at least 99.8%. All predictions should be single-lines only, as this is how the model was fine-tuned. Multiple lines in a prediction request will always result in a Label0 response, ie not written by Anne Bradstreet, even if pulled directly from her works.

In short, the model seems to know the difference between generic GPT-2 text responding to a Bradstreet prompt, vs the output of a model fine-tuned on Bradstreet text and generating based on Bradstreet responses.

This was developed exclusively for use at an upcoming workshop.

Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.