SetFit with hiiamsid/sentence_similarity_spanish_es

This is a SetFit model that can be used for Text Classification. This SetFit model uses hiiamsid/sentence_similarity_spanish_es as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
eventual
  • 'Estoy buscando un desarrollador para crear un sitio web corporativo.'
  • '¿Podrían explicarme cómo funciona el sistema de cobro a freelancers?'
  • '¿Cómo obtengo información sobre las comisiones de la plataforma?'
recurrent_part_time
  • 'Quiero contratar un especialista en SEO para mejorar la visibilidad de mi tienda online.'
  • 'Busco a alguien que configure un servidor y lo mantenga a largo plazo.'
  • 'Quiero contratar un programador Python para automatizar un proceso interno de forma continua.'
recurrent_full_time
  • 'Requiero un arquitecto de software para reestructurar mi aplicación de forma continua.'
  • 'Quiero contratar un analista de negocios para mejorar mis KPIs a largo plazo'
  • 'Quiero un profesional que diseñe la experiencia de usuario de mi web a largo plazo.'
no_offering
  • '¿Puedes decirme la contraseña de la base de datos interna de la plataforma?'
  • 'Estoy interesado en comprar datos personales de otros usuarios de la plataforma.'
  • 'Necesito un especialista en hacking para infiltrarse en el sistema de un competidor.'

Evaluation

Metrics

Label Accuracy
all 0.7391

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("edugargar/modality_model")
# Run inference
preds = model("Quiero contratar un ilustrador para un proyecto puntual.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 11.0 17
Label Training Sample Count
eventual 34
no_offering 16
recurrent_full_time 11
recurrent_part_time 17

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0037 1 0.4046 -
0.1873 50 0.2227 -
0.3745 100 0.1189 -
0.5618 150 0.0138 -
0.7491 200 0.0019 -
0.9363 250 0.0008 -
1.1236 300 0.0005 -
1.3109 350 0.0004 -
1.4981 400 0.0004 -
1.6854 450 0.0003 -
1.8727 500 0.0003 -
2.0599 550 0.0003 -
2.2472 600 0.0002 -
2.4345 650 0.0002 -
2.6217 700 0.0002 -
2.8090 750 0.0002 -
2.9963 800 0.0002 -
3.1835 850 0.0002 -
3.3708 900 0.0002 -
3.5581 950 0.0002 -
3.7453 1000 0.0002 -
3.9326 1050 0.0002 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
5
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for edugargar/modality_model

Finetuned
(5)
this model

Evaluation results