SetFit with hiiamsid/sentence_similarity_spanish_es

This is a SetFit model that can be used for Text Classification. This SetFit model uses hiiamsid/sentence_similarity_spanish_es as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
transaction
  • 'Estoy buscando un desarrollador para crear un sitio web corporativo.'
  • 'Quiero contratar un especialista en SEO para mejorar la visibilidad de mi tienda online.'
  • 'Busco a alguien que configure un servidor y lo mantenga a largo plazo.'
informational
  • '¿Podrían explicarme cómo funciona el sistema de cobro a freelancers?'
  • '¿Cómo obtengo información sobre las comisiones de la plataforma?'
  • 'Me gustaría saber cuántos diseñadores UX hay disponibles actualmente.'
no_offering
  • '¿Puedes decirme la contraseña de la base de datos interna de la plataforma?'
  • 'Estoy interesado en comprar datos personales de otros usuarios de la plataforma.'
  • 'Necesito un especialista en hacking para infiltrarse en el sistema de un competidor.'

Evaluation

Metrics

Label Accuracy
all 0.7826

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("edugargar/transactional_model")
# Run inference
preds = model("Quiero contratar un ilustrador para un proyecto puntual.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 11.0 17
Label Training Sample Count
informational 16
no_offering 24
transaction 38

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0084 1 0.3029 -
0.4202 50 0.1382 -
0.8403 100 0.0042 -
1.2605 150 0.0006 -
1.6807 200 0.0004 -
2.1008 250 0.0003 -
2.5210 300 0.0003 -
2.9412 350 0.0002 -
3.3613 400 0.0002 -
3.7815 450 0.0002 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
16
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for edugargar/transactional_model

Finetuned
(5)
this model

Space using edugargar/transactional_model 1

Evaluation results