test-carbonate-segmentation2

This model is a fine-tuned version of nvidia/mit-b0 on the edwardhuang/carbonate-thin-sections dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3642
  • Mean Iou: 0.2180
  • Mean Accuracy: 0.3344
  • Overall Accuracy: 0.6454
  • Accuracy Micrite: nan
  • Accuracy Cement: nan
  • Accuracy Peloid/pellet/ooid: nan
  • Accuracy Biotic: 0.6660
  • Accuracy Scale bar: 0.0028
  • Iou Micrite: 0.0
  • Iou Cement: nan
  • Iou Peloid/pellet/ooid: nan
  • Iou Biotic: 0.6511
  • Iou Scale bar: 0.0028

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Micrite Accuracy Cement Accuracy Peloid/pellet/ooid Accuracy Biotic Accuracy Scale bar Iou Micrite Iou Cement Iou Peloid/pellet/ooid Iou Biotic Iou Scale bar
1.2003 2.22 20 1.5260 0.4834 0.7334 0.9835 nan nan nan 1.0 0.4669 0.0 nan nan 0.9834 0.4669
1.2006 4.44 40 0.8923 0.6346 0.9521 0.9498 nan nan nan 0.9497 0.9545 0.0 nan nan 0.9494 0.9545
1.4233 6.67 60 1.0240 0.4417 0.6716 0.9793 nan nan nan 0.9995 0.3438 0.0 nan nan 0.9814 0.3438
1.1735 8.89 80 0.7964 0.5230 0.7890 0.9437 nan nan nan 0.9539 0.6241 0.0 nan nan 0.9449 0.6241
1.0242 11.11 100 0.8747 0.5322 0.8038 0.9849 nan nan nan 0.9969 0.6108 0.0 nan nan 0.9859 0.6108
0.9161 13.33 120 0.9217 0.5133 0.7767 0.9831 nan nan nan 0.9967 0.5568 0.0 nan nan 0.9832 0.5568
0.8102 15.56 140 0.7069 0.5923 0.8907 0.9490 nan nan nan 0.9529 0.8286 0.0 nan nan 0.9484 0.8286
0.5436 17.78 160 0.5149 0.3206 0.4929 0.8806 nan nan nan 0.9062 0.0795 0.0 nan nan 0.8823 0.0795
0.8517 20.0 180 0.5646 0.3748 0.5719 0.9200 nan nan nan 0.9430 0.2008 0.0 nan nan 0.9236 0.2008
0.4532 22.22 200 0.6128 0.3133 0.4837 0.9188 nan nan nan 0.9475 0.0199 0.0 nan nan 0.9201 0.0199
1.3133 24.44 220 0.3006 0.2391 0.3645 0.7064 nan nan nan 0.7290 0.0 0.0 nan nan 0.7172 0.0
0.4636 26.67 240 0.3260 0.1903 0.2901 0.5259 nan nan nan 0.5414 0.0388 0.0 nan nan 0.5320 0.0388
0.9843 28.89 260 0.3663 0.2741 0.4182 0.6986 nan nan nan 0.7171 0.1193 0.0 nan nan 0.7031 0.1193
0.7617 31.11 280 0.3338 0.2357 0.3627 0.7030 nan nan nan 0.7255 0.0 0.0 nan nan 0.7072 0.0
1.283 33.33 300 0.3395 0.2723 0.4176 0.7232 nan nan nan 0.7434 0.0919 0.0 nan nan 0.7250 0.0919
0.6578 35.56 320 0.3382 0.2069 0.3170 0.6143 nan nan nan 0.6339 0.0 0.0 nan nan 0.6207 0.0
0.2129 37.78 340 0.3436 0.2288 0.3525 0.6831 nan nan nan 0.7049 0.0 0.0 nan nan 0.6863 0.0
0.7001 40.0 360 0.2998 0.2001 0.3069 0.5771 nan nan nan 0.5950 0.0189 0.0 nan nan 0.5813 0.0189
0.3866 42.22 380 0.3162 0.1840 0.2819 0.5464 nan nan nan 0.5639 0.0 0.0 nan nan 0.5521 0.0
1.2623 44.44 400 0.3431 0.2125 0.3254 0.6172 nan nan nan 0.6365 0.0142 0.0 nan nan 0.6234 0.0142
0.6115 46.67 420 0.2987 0.2020 0.3095 0.5998 nan nan nan 0.6190 0.0 0.0 nan nan 0.6060 0.0
0.5802 48.89 440 0.3642 0.2180 0.3344 0.6454 nan nan nan 0.6660 0.0028 0.0 nan nan 0.6511 0.0028

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.