File size: 8,287 Bytes
51aa284 146f89f 51aa284 146f89f 51aa284 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: test-carbonate-segmentation2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-carbonate-segmentation2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the edwardhuang/carbonate-thin-sections dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3642
- Mean Iou: 0.2180
- Mean Accuracy: 0.3344
- Overall Accuracy: 0.6454
- Accuracy Micrite: nan
- Accuracy Cement: nan
- Accuracy Peloid/pellet/ooid: nan
- Accuracy Biotic: 0.6660
- Accuracy Scale bar: 0.0028
- Iou Micrite: 0.0
- Iou Cement: nan
- Iou Peloid/pellet/ooid: nan
- Iou Biotic: 0.6511
- Iou Scale bar: 0.0028
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Micrite | Accuracy Cement | Accuracy Peloid/pellet/ooid | Accuracy Biotic | Accuracy Scale bar | Iou Micrite | Iou Cement | Iou Peloid/pellet/ooid | Iou Biotic | Iou Scale bar |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:---------------:|:---------------------------:|:---------------:|:------------------:|:-----------:|:----------:|:----------------------:|:----------:|:-------------:|
| 1.2003 | 2.22 | 20 | 1.5260 | 0.4834 | 0.7334 | 0.9835 | nan | nan | nan | 1.0 | 0.4669 | 0.0 | nan | nan | 0.9834 | 0.4669 |
| 1.2006 | 4.44 | 40 | 0.8923 | 0.6346 | 0.9521 | 0.9498 | nan | nan | nan | 0.9497 | 0.9545 | 0.0 | nan | nan | 0.9494 | 0.9545 |
| 1.4233 | 6.67 | 60 | 1.0240 | 0.4417 | 0.6716 | 0.9793 | nan | nan | nan | 0.9995 | 0.3438 | 0.0 | nan | nan | 0.9814 | 0.3438 |
| 1.1735 | 8.89 | 80 | 0.7964 | 0.5230 | 0.7890 | 0.9437 | nan | nan | nan | 0.9539 | 0.6241 | 0.0 | nan | nan | 0.9449 | 0.6241 |
| 1.0242 | 11.11 | 100 | 0.8747 | 0.5322 | 0.8038 | 0.9849 | nan | nan | nan | 0.9969 | 0.6108 | 0.0 | nan | nan | 0.9859 | 0.6108 |
| 0.9161 | 13.33 | 120 | 0.9217 | 0.5133 | 0.7767 | 0.9831 | nan | nan | nan | 0.9967 | 0.5568 | 0.0 | nan | nan | 0.9832 | 0.5568 |
| 0.8102 | 15.56 | 140 | 0.7069 | 0.5923 | 0.8907 | 0.9490 | nan | nan | nan | 0.9529 | 0.8286 | 0.0 | nan | nan | 0.9484 | 0.8286 |
| 0.5436 | 17.78 | 160 | 0.5149 | 0.3206 | 0.4929 | 0.8806 | nan | nan | nan | 0.9062 | 0.0795 | 0.0 | nan | nan | 0.8823 | 0.0795 |
| 0.8517 | 20.0 | 180 | 0.5646 | 0.3748 | 0.5719 | 0.9200 | nan | nan | nan | 0.9430 | 0.2008 | 0.0 | nan | nan | 0.9236 | 0.2008 |
| 0.4532 | 22.22 | 200 | 0.6128 | 0.3133 | 0.4837 | 0.9188 | nan | nan | nan | 0.9475 | 0.0199 | 0.0 | nan | nan | 0.9201 | 0.0199 |
| 1.3133 | 24.44 | 220 | 0.3006 | 0.2391 | 0.3645 | 0.7064 | nan | nan | nan | 0.7290 | 0.0 | 0.0 | nan | nan | 0.7172 | 0.0 |
| 0.4636 | 26.67 | 240 | 0.3260 | 0.1903 | 0.2901 | 0.5259 | nan | nan | nan | 0.5414 | 0.0388 | 0.0 | nan | nan | 0.5320 | 0.0388 |
| 0.9843 | 28.89 | 260 | 0.3663 | 0.2741 | 0.4182 | 0.6986 | nan | nan | nan | 0.7171 | 0.1193 | 0.0 | nan | nan | 0.7031 | 0.1193 |
| 0.7617 | 31.11 | 280 | 0.3338 | 0.2357 | 0.3627 | 0.7030 | nan | nan | nan | 0.7255 | 0.0 | 0.0 | nan | nan | 0.7072 | 0.0 |
| 1.283 | 33.33 | 300 | 0.3395 | 0.2723 | 0.4176 | 0.7232 | nan | nan | nan | 0.7434 | 0.0919 | 0.0 | nan | nan | 0.7250 | 0.0919 |
| 0.6578 | 35.56 | 320 | 0.3382 | 0.2069 | 0.3170 | 0.6143 | nan | nan | nan | 0.6339 | 0.0 | 0.0 | nan | nan | 0.6207 | 0.0 |
| 0.2129 | 37.78 | 340 | 0.3436 | 0.2288 | 0.3525 | 0.6831 | nan | nan | nan | 0.7049 | 0.0 | 0.0 | nan | nan | 0.6863 | 0.0 |
| 0.7001 | 40.0 | 360 | 0.2998 | 0.2001 | 0.3069 | 0.5771 | nan | nan | nan | 0.5950 | 0.0189 | 0.0 | nan | nan | 0.5813 | 0.0189 |
| 0.3866 | 42.22 | 380 | 0.3162 | 0.1840 | 0.2819 | 0.5464 | nan | nan | nan | 0.5639 | 0.0 | 0.0 | nan | nan | 0.5521 | 0.0 |
| 1.2623 | 44.44 | 400 | 0.3431 | 0.2125 | 0.3254 | 0.6172 | nan | nan | nan | 0.6365 | 0.0142 | 0.0 | nan | nan | 0.6234 | 0.0142 |
| 0.6115 | 46.67 | 420 | 0.2987 | 0.2020 | 0.3095 | 0.5998 | nan | nan | nan | 0.6190 | 0.0 | 0.0 | nan | nan | 0.6060 | 0.0 |
| 0.5802 | 48.89 | 440 | 0.3642 | 0.2180 | 0.3344 | 0.6454 | nan | nan | nan | 0.6660 | 0.0028 | 0.0 | nan | nan | 0.6511 | 0.0028 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Tokenizers 0.13.3
|