|
--- |
|
tags: autotrain |
|
language: tr |
|
widget: |
|
- text: "Bu ürün gerçekten güzel çıktı" |
|
datasets: |
|
- emre/autotrain-data-turkish-sentiment-analysis |
|
co2_eq_emissions: 120.82460124309924 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 870727732 |
|
- CO2 Emissions (in grams): 120.82460124309924 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.1098366305232048 |
|
- Accuracy: 0.9697853317600073 |
|
- Macro F1: 0.9482820974460786 |
|
- Micro F1: 0.9697853317600073 |
|
- Weighted F1: 0.9695237873890088 |
|
- Macro Precision: 0.9540948884759232 |
|
- Micro Precision: 0.9697853317600073 |
|
- Weighted Precision: 0.9694186941924757 |
|
- Macro Recall: 0.9428467518468838 |
|
- Micro Recall: 0.9697853317600073 |
|
- Weighted Recall: 0.9697853317600073 |
|
|
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Bu ürün gerçekten güzel çıktı"}' https://api-inference.huggingface.co/models/emre/turkish-sentiment-analysis |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("emre/turkish-sentiment-analysis", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("emre/turkish-sentiment-analysis", use_auth_token=True) |
|
|
|
inputs = tokenizer("Bu ürün gerçekten güzel çıktı", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |