emre's picture
update readme.md
51ab798
---
license: apache-2.0
tags:
- generated_from_trainer
- robust-speech-event
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xlsr-53-W2V2-TR-MED
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-W2V2-TR-MED
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4467
- Wer: 0.4598
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 60
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.1343 | 4.21 | 400 | 2.3674 | 1.0372 |
| 0.8075 | 8.42 | 800 | 0.4583 | 0.6308 |
| 0.3209 | 12.63 | 1200 | 0.4291 | 0.5531 |
| 0.2273 | 16.84 | 1600 | 0.4348 | 0.5378 |
| 0.1764 | 21.05 | 2000 | 0.4550 | 0.5326 |
| 0.148 | 25.26 | 2400 | 0.4839 | 0.5319 |
| 0.1268 | 29.47 | 2800 | 0.4515 | 0.5070 |
| 0.1113 | 33.68 | 3200 | 0.4590 | 0.4930 |
| 0.1025 | 37.89 | 3600 | 0.4546 | 0.4888 |
| 0.0922 | 42.11 | 4000 | 0.4782 | 0.4852 |
| 0.082 | 46.32 | 4400 | 0.4605 | 0.4752 |
| 0.0751 | 50.53 | 4800 | 0.4358 | 0.4689 |
| 0.0699 | 54.74 | 5200 | 0.4359 | 0.4629 |
| 0.0633 | 58.95 | 5600 | 0.4467 | 0.4598 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3