Whisper Small Mn - Erkhembayar Gantulga
This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1561
- Wer: 19.4492
Training and evaluation data
Datasets used for training:
For training, combined Common Voice 17.0 and Google Fleurs datasets:
from datasets import load_dataset, DatasetDict, concatenate_datasets
from datasets import Audio
common_voice = DatasetDict()
common_voice["train"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="train+validation+validated", use_auth_token=True)
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="test", use_auth_token=True)
common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))
common_voice = common_voice.remove_columns(
["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes", "variant"]
)
google_fleurs = DatasetDict()
google_fleurs["train"] = load_dataset("google/fleurs", "mn_mn", split="train+validation", use_auth_token=True)
google_fleurs["test"] = load_dataset("google/fleurs", "mn_mn", split="test", use_auth_token=True)
google_fleurs = google_fleurs.remove_columns(
["id", "num_samples", "path", "raw_transcription", "gender", "lang_id", "language", "lang_group_id"]
)
google_fleurs = google_fleurs.rename_column("transcription", "sentence")
dataset = DatasetDict()
dataset["train"] = concatenate_datasets([common_voice["train"], google_fleurs["train"]])
dataset["test"] = concatenate_datasets([common_voice["test"], google_fleurs["test"]])
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4118 | 0.4912 | 500 | 0.4810 | 50.3500 |
0.283 | 0.9823 | 1000 | 0.3347 | 38.6233 |
0.1778 | 1.4735 | 1500 | 0.2738 | 33.5240 |
0.1412 | 1.9646 | 2000 | 0.2216 | 27.8363 |
0.0676 | 2.4558 | 2500 | 0.1967 | 24.3823 |
0.0602 | 2.9470 | 3000 | 0.1711 | 21.7428 |
0.0363 | 3.4381 | 3500 | 0.1624 | 20.4108 |
0.0332 | 3.9293 | 4000 | 0.1561 | 19.4492 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for erkhem-gantulga/whisper-small-mn
Base model
openai/whisper-small