See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 07c1a1f5d3b98b65_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/07c1a1f5d3b98b65_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/0c988c4e-22d4-4a5c-8878-a5d22847af8f
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 1
mlflow_experiment_name: /tmp/07c1a1f5d3b98b65_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: 1e10de6b-bd83-449b-b1ec-74c8dcdb8bcb
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1e10de6b-bd83-449b-b1ec-74c8dcdb8bcb
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
0c988c4e-22d4-4a5c-8878-a5d22847af8f
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4749
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3744 | 0.0000 | 1 | 2.2867 |
1.8968 | 0.0004 | 13 | 1.8319 |
1.1986 | 0.0008 | 26 | 1.5199 |
1.2362 | 0.0013 | 39 | 1.4749 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9