See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: echarlaix/tiny-random-PhiForCausalLM
bf16: auto
chat_template: phi_3
dataset_prepared_path: null
datasets:
- data_files:
- 1c3359627c73674a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1c3359627c73674a_train_data.json
type:
field_input: about_book
field_instruction: topic_name
field_output: conversation
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: error577/86c41dc0-e58a-448b-9dd3-f03357b788a0
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
#max_steps: 100
micro_batch_size: 4
mlflow_experiment_name: /tmp/1c3359627c73674a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 24
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 4096
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ba48bfb0-9311-44bf-bd5d-53c685694e8d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ba48bfb0-9311-44bf-bd5d-53c685694e8d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
86c41dc0-e58a-448b-9dd3-f03357b788a0
This model is a fine-tuned version of echarlaix/tiny-random-PhiForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.7952
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 24
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
6.9369 | 0.0096 | 1 | 6.9385 |
6.8626 | 1.0 | 104 | 6.8637 |
6.8467 | 2.0 | 208 | 6.8443 |
6.8355 | 3.0 | 312 | 6.8299 |
6.8247 | 4.0 | 416 | 6.8210 |
6.8202 | 5.0 | 520 | 6.8154 |
6.8188 | 6.0 | 624 | 6.8110 |
6.8109 | 7.0 | 728 | 6.8078 |
6.821 | 8.0 | 832 | 6.8050 |
6.8093 | 9.0 | 936 | 6.8028 |
6.8046 | 10.0 | 1040 | 6.8014 |
6.8132 | 11.0 | 1144 | 6.8002 |
6.8058 | 12.0 | 1248 | 6.7990 |
6.8112 | 13.0 | 1352 | 6.7982 |
6.8054 | 14.0 | 1456 | 6.7974 |
6.8078 | 15.0 | 1560 | 6.7969 |
6.8045 | 16.0 | 1664 | 6.7963 |
6.8032 | 17.0 | 1768 | 6.7961 |
6.8015 | 18.0 | 1872 | 6.7957 |
6.8004 | 19.0 | 1976 | 6.7955 |
6.8054 | 20.0 | 2080 | 6.7953 |
6.8052 | 21.0 | 2184 | 6.7952 |
6.8041 | 22.0 | 2288 | 6.7952 |
6.8051 | 23.0 | 2392 | 6.7952 |
6.8056 | 24.0 | 2496 | 6.7952 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for error577/86c41dc0-e58a-448b-9dd3-f03357b788a0
Base model
echarlaix/tiny-random-PhiForCausalLM