Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
base_model: NousResearch/CodeLlama-7b-hf-flash
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d9efa27cb4405f8a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d9efa27cb4405f8a_train_data.json
  type:
    field_instruction: dialogue
    field_output: summary
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/f18fb7fe-3d48-4608-b59d-fea5f83ad452
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/d9efa27cb4405f8a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 256
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: d76ec617-d1c6-4e47-a859-b4cc5223693f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d76ec617-d1c6-4e47-a859-b4cc5223693f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

f18fb7fe-3d48-4608-b59d-fea5f83ad452

This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf-flash on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
35.0519 0.0117 1 2.0326
17.8067 0.2918 25 1.0233
19.0969 0.5835 50 0.9812
14.1947 0.8753 75 0.9413
10.4523 1.1714 100 0.9270

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for error577/f18fb7fe-3d48-4608-b59d-fea5f83ad452

Adapter
(158)
this model