distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7392
  • Accuracy: {'accuracy': 0.901}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 125 0.2589 {'accuracy': 0.896}
No log 2.0 250 0.4331 {'accuracy': 0.868}
No log 3.0 375 0.3884 {'accuracy': 0.901}
0.2587 4.0 500 0.4673 {'accuracy': 0.895}
0.2587 5.0 625 0.6184 {'accuracy': 0.899}
0.2587 6.0 750 0.6478 {'accuracy': 0.902}
0.2587 7.0 875 0.7249 {'accuracy': 0.899}
0.0338 8.0 1000 0.7446 {'accuracy': 0.893}
0.0338 9.0 1125 0.7290 {'accuracy': 0.9}
0.0338 10.0 1250 0.7392 {'accuracy': 0.901}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for erwinyonata/distilbert-base-uncased-lora-text-classification

Adapter
(228)
this model