|
--- |
|
language: |
|
- en |
|
tags: |
|
- esb |
|
datasets: |
|
- esb/datasets |
|
- ldc/chime-4 |
|
--- |
|
To reproduce this run, first install Whisper from the Transformers compatible repo [patrickvonplaten/whisper](https://github.com/patrickvonplaten/whisper): |
|
``` |
|
pip install git+https://github.com/openai/whisper.git |
|
``` |
|
Then execute the command: |
|
```python |
|
#!/usr/bin/env bash |
|
CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_whisper.py \ |
|
--model_name_or_path="medium.en" \ |
|
--dataset_name="esb/datasets" \ |
|
--dataset_config_name="chime4" \ |
|
--max_steps="2500" \ |
|
--output_dir="./" \ |
|
--run_name="whisper-chime4" \ |
|
--dropout_rate="0.1" \ |
|
--wandb_project="whisper" \ |
|
--per_device_train_batch_size="64" \ |
|
--per_device_eval_batch_size="16" \ |
|
--logging_steps="25" \ |
|
--learning_rate="1e-4" \ |
|
--warmup_steps="500" \ |
|
--report_to="wandb" \ |
|
--preprocessing_num_workers="16" \ |
|
--evaluation_strategy="steps" \ |
|
--eval_steps="500" \ |
|
--save_strategy="steps" \ |
|
--save_steps="500" \ |
|
--generation_max_length="224" \ |
|
--length_column_name="input_lengths" \ |
|
--gradient_checkpointing \ |
|
--group_by_length \ |
|
--freeze_encoder \ |
|
--fp16 \ |
|
--overwrite_output_dir \ |
|
--do_train \ |
|
--do_eval \ |
|
--do_predict \ |
|
--predict_with_generate \ |
|
--use_auth_token |
|
|
|
``` |
|
|