|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- arabic |
|
- ar |
|
- ur |
|
- urdu |
|
- mt5 |
|
- Abstractive Summarization |
|
- generated_from_trainer |
|
model-index: |
|
- name: mt5-base-finetuned-ar-fa |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-base-finetuned-ar-fa |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0303 |
|
- Rouge-1: 26.73 |
|
- Rouge-2: 12.63 |
|
- Rouge-l: 23.96 |
|
- Gen Len: 18.99 |
|
- Bertscore: 71.41 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- label_smoothing_factor: 0.1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| |
|
| 3.7736 | 1.0 | 3287 | 3.2308 | 24.22 | 10.11 | 21.46 | 18.99 | 70.69 | |
|
| 3.3783 | 2.0 | 6574 | 3.1283 | 25.28 | 10.9 | 22.43 | 18.99 | 71.02 | |
|
| 3.2351 | 3.0 | 9861 | 3.0693 | 25.77 | 11.36 | 22.93 | 19.0 | 71.2 | |
|
| 3.1363 | 4.0 | 13148 | 3.0421 | 25.88 | 11.57 | 23.08 | 18.99 | 71.22 | |
|
| 3.0669 | 5.0 | 16435 | 3.0303 | 26.25 | 11.84 | 23.44 | 18.99 | 71.39 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|