vit-base-food101 / README.md
eslamxm's picture
update model card README.md
51da4b1
|
raw
history blame
1.88 kB
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- food101
metrics:
- accuracy
model-index:
- name: vit-base-food101-demo-v5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: food101
type: food101
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8558811881188119
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-food101-demo-v5
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5434
- Accuracy: 0.8559
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.6283 | 1.0 | 4735 | 0.9875 | 0.7409 |
| 0.9874 | 2.0 | 9470 | 0.7967 | 0.7894 |
| 0.7102 | 3.0 | 14205 | 0.6455 | 0.8255 |
| 0.4917 | 4.0 | 18940 | 0.5502 | 0.8524 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1