evilfreelancer's picture
Update README.md
e94af5f verified
---
license: mit
datasets:
- Egor-AI/Russian_thinking_dataset
language:
- ru
- en
base_model:
- evilfreelancer/o1_gigachat-20b-a3b_lora
pipeline_tag: question-answering
tags:
- chat
- o1
- cot
- thinking
- reflection
---
# Russian o1 / GigaChat 20B-A3B Instruct GGUF
https://huggingface.co/evilfreelancer/o1_gigachat-20b-a3b_lora
LoRA-адаптер для модели [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct-bf16) обученный на
датасете [Egor-AI/Russian_thinking_dataset](https://huggingface.co/datasets/Egor-AI/Russian_thinking_dataset) (машинный
перевод на русский язык
датасета [BintangFortuna/OpenO1-SFT-EN-SY](https://huggingface.co/datasets/BintangFortuna/OpenO1-SFT-EN-SY)).
Обученная модель способна имитировать логические размышлению на русском языке по аналогии с тем, как
это делает `o1` от `OpenAI`.
Необходимо использовать следующего вида системный промт:
```
Вы — ИИ-помощник. Отформатируйте свои ответы следующим образом: <Thought> Ваши мысли (понимание, рассуждения) </Thought> <output> Ваш ответ </output>
```
W&B отчёт: https://api.wandb.ai/links/evilfreelancer/nlec8bt8
Обучение производилось при помощи утилиты [impruver](https://github.com/EvilFreelancer/impruver) используя конфигурацию
[GigaChat/20B-A3B_lora_o1](https://github.com/EvilFreelancer/impruver/blob/main/recipes/configs/GigaChat/20B-A3B_lora_o1.yaml).
На всё про всё ушло примерно 117 часов на RTX 4090, при этом понадобилось 23Гб видеопамяти.
```yaml
output_dir: ./models/GigaChat_20B-A3B_lora_thinking
train_path: ./train.GigaChat_20B-A3B_lora_thinking.jsonl
val_path: ./val.GigaChat_20B-A3B_lora_thinking.jsonl
datasets:
- name: Egor-AI/Russian_thinking_dataset
converter: impruver.instruction_to_messages
mapping:
system: system
instruction: prompt
output: response
model:
class: custom.gigachat.DeepseekForCausalLM
name: ai-sage/GigaChat-20B-A3B-instruct-bf16
attn_implementation: flash_attention_2
load_in_4bit: true
load_in_8bit: false
dtype: bf16
lora:
r: 8
lora_alpha: 32
lora_dropout: 0.1
bias: none
target_modules: [ q_proj, v_proj, k_proj, o_proj, gate_proj, down_proj, up_proj ]
task_type: CAUSAL_LM
tokenizer:
class: transformers.AutoTokenizer
name: ai-sage/GigaChat-20B-A3B-instruct
max_tokens_count: 1500
special_tokens:
pad_token_id: 1
pad_token: <s>
bos_token_id: 1
bos_token: <s>
eos_token_id: 128001
eos_token: <|message_sep|>
chat_template: >
{% if messages[0]['role'] == 'system' -%}
{%- set loop_messages = messages[1:] -%}
{%- set system_message = bos_token + messages[0]['content'] + additional_special_tokens[1] -%}
{%- else -%}
{%- set loop_messages = messages -%}
{%- set system_message = bos_token + '' -%}
{%- endif -%}
{%- for message in messages %}
{%- if message['role'] == 'system' -%}
{{ system_message -}}
{%- endif -%}
{%- if message['role'] == 'user' -%}
{{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}
{{ 'available functions' + additional_special_tokens[0] + additional_special_tokens[2] + additional_special_tokens[3] + additional_special_tokens[1] -}}
{%- endif -%}
{%- if message['role'] == 'assistant' -%}
{{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}
{%- endif -%}
{%- if loop.last and add_generation_prompt -%}
{{ 'assistant' + additional_special_tokens[0] -}}
{%- endif -%}
{%- endfor %}
trainer:
eval_strategy: steps
save_strategy: steps
eval_steps: 100
save_steps: 100
per_device_train_batch_size: 1
per_device_eval_batch_size: 1
gradient_accumulation_steps: 8
logging_steps: 1
learning_rate: 0.0004
num_train_epochs: 2
lr_scheduler_type: cosine
warmup_steps: 16
optim: adamw_torch_4bit
metric_for_best_model: eval_loss
load_best_model_at_end: true
save_total_limit: 2
seed: 42
remove_unused_columns: false
max_grad_norm: 1.0
weight_decay: 0.08
torch_compile: false
```