fabriceyhc's picture
Update README.md
5793d97
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - sibyl
datasets:
  - yelp_polarity
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased-yelp_polarity
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: yelp_polarity
          type: yelp_polarity
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9516052631578947

bert-base-uncased-yelp_polarity

This model is a fine-tuned version of bert-base-uncased on the yelp_polarity dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3222
  • Accuracy: 0.9516

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 277200
  • training_steps: 2772000

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8067 0.0 2000 0.8241 0.4975
0.5482 0.01 4000 0.3507 0.8591
0.3427 0.01 6000 0.3750 0.9139
0.4133 0.01 8000 0.5520 0.9016
0.4301 0.02 10000 0.3803 0.9304
0.3716 0.02 12000 0.4168 0.9337
0.4076 0.03 14000 0.5042 0.9170
0.3674 0.03 16000 0.4806 0.9268
0.3813 0.03 18000 0.4227 0.9261
0.3723 0.04 20000 0.3360 0.9418
0.3876 0.04 22000 0.3255 0.9407
0.3351 0.04 24000 0.3283 0.9404
0.34 0.05 26000 0.3489 0.9430
0.3006 0.05 28000 0.3302 0.9464
0.349 0.05 30000 0.3853 0.9375
0.3696 0.06 32000 0.2992 0.9454
0.3301 0.06 34000 0.3484 0.9464
0.3151 0.06 36000 0.3529 0.9455
0.3682 0.07 38000 0.3052 0.9420
0.3184 0.07 40000 0.3323 0.9466
0.3207 0.08 42000 0.3133 0.9532
0.3346 0.08 44000 0.3826 0.9414
0.3008 0.08 46000 0.3059 0.9484
0.3306 0.09 48000 0.3089 0.9475
0.342 0.09 50000 0.3611 0.9486
0.3424 0.09 52000 0.3227 0.9445
0.3044 0.1 54000 0.3130 0.9489
0.3278 0.1 56000 0.3827 0.9368
0.288 0.1 58000 0.3080 0.9504
0.3342 0.11 60000 0.3252 0.9471
0.3737 0.11 62000 0.4250 0.9343

Framework versions

  • Transformers 4.10.2
  • Pytorch 1.7.1
  • Datasets 1.6.1
  • Tokenizers 0.10.3