ccsasuke commited on
Commit
3ff012a
·
1 Parent(s): b1cf099

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1867 -0
README.md CHANGED
@@ -1,7 +1,1874 @@
1
  ---
2
  tags:
3
  - feature-extraction
 
4
  pipeline_tag: feature-extraction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
  DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON:
7
  Diverse Augmentation Towards Generalizable Dense Retrieval](https://arxiv.org/abs/2302.07452).
 
1
  ---
2
  tags:
3
  - feature-extraction
4
+ - mteb
5
  pipeline_tag: feature-extraction
6
+ model-index:
7
+ - name: dragon-plus
8
+ results:
9
+ - task:
10
+ type: Retrieval
11
+ dataset:
12
+ type: arguana
13
+ name: MTEB ArguAna
14
+ config: default
15
+ split: test
16
+ revision: None
17
+ metrics:
18
+ - type: map_at_1
19
+ value: 22.973
20
+ - type: map_at_10
21
+ value: 38.242
22
+ - type: map_at_100
23
+ value: 39.326
24
+ - type: map_at_1000
25
+ value: 39.342
26
+ - type: map_at_3
27
+ value: 33.144
28
+ - type: map_at_5
29
+ value: 35.818
30
+ - type: mrr_at_1
31
+ value: 23.115
32
+ - type: mrr_at_10
33
+ value: 38.31
34
+ - type: mrr_at_100
35
+ value: 39.387
36
+ - type: mrr_at_1000
37
+ value: 39.403
38
+ - type: mrr_at_3
39
+ value: 33.167
40
+ - type: mrr_at_5
41
+ value: 35.856
42
+ - type: ndcg_at_1
43
+ value: 22.973
44
+ - type: ndcg_at_10
45
+ value: 47.251
46
+ - type: ndcg_at_100
47
+ value: 51.937
48
+ - type: ndcg_at_1000
49
+ value: 52.288000000000004
50
+ - type: ndcg_at_3
51
+ value: 36.569
52
+ - type: ndcg_at_5
53
+ value: 41.396
54
+ - type: precision_at_1
55
+ value: 22.973
56
+ - type: precision_at_10
57
+ value: 7.632
58
+ - type: precision_at_100
59
+ value: 0.9690000000000001
60
+ - type: precision_at_1000
61
+ value: 0.1
62
+ - type: precision_at_3
63
+ value: 15.504999999999999
64
+ - type: precision_at_5
65
+ value: 11.65
66
+ - type: recall_at_1
67
+ value: 22.973
68
+ - type: recall_at_10
69
+ value: 76.31599999999999
70
+ - type: recall_at_100
71
+ value: 96.942
72
+ - type: recall_at_1000
73
+ value: 99.57300000000001
74
+ - type: recall_at_3
75
+ value: 46.515
76
+ - type: recall_at_5
77
+ value: 58.25
78
+ - task:
79
+ type: Retrieval
80
+ dataset:
81
+ type: BeIR/cqadupstack
82
+ name: MTEB CQADupstackAndroidRetrieval
83
+ config: default
84
+ split: test
85
+ revision: None
86
+ metrics:
87
+ - type: map_at_1
88
+ value: 28.793000000000003
89
+ - type: map_at_10
90
+ value: 38.686
91
+ - type: map_at_100
92
+ value: 39.848
93
+ - type: map_at_1000
94
+ value: 39.989999999999995
95
+ - type: map_at_3
96
+ value: 35.437000000000005
97
+ - type: map_at_5
98
+ value: 37.067
99
+ - type: mrr_at_1
100
+ value: 35.05
101
+ - type: mrr_at_10
102
+ value: 43.903999999999996
103
+ - type: mrr_at_100
104
+ value: 44.612
105
+ - type: mrr_at_1000
106
+ value: 44.669
107
+ - type: mrr_at_3
108
+ value: 41.321000000000005
109
+ - type: mrr_at_5
110
+ value: 42.573
111
+ - type: ndcg_at_1
112
+ value: 35.05
113
+ - type: ndcg_at_10
114
+ value: 44.564
115
+ - type: ndcg_at_100
116
+ value: 49.252
117
+ - type: ndcg_at_1000
118
+ value: 51.791
119
+ - type: ndcg_at_3
120
+ value: 39.576
121
+ - type: ndcg_at_5
122
+ value: 41.426
123
+ - type: precision_at_1
124
+ value: 35.05
125
+ - type: precision_at_10
126
+ value: 8.455
127
+ - type: precision_at_100
128
+ value: 1.3299999999999998
129
+ - type: precision_at_1000
130
+ value: 0.187
131
+ - type: precision_at_3
132
+ value: 18.645999999999997
133
+ - type: precision_at_5
134
+ value: 13.247
135
+ - type: recall_at_1
136
+ value: 28.793000000000003
137
+ - type: recall_at_10
138
+ value: 56.351
139
+ - type: recall_at_100
140
+ value: 76.542
141
+ - type: recall_at_1000
142
+ value: 93.14099999999999
143
+ - type: recall_at_3
144
+ value: 41.581
145
+ - type: recall_at_5
146
+ value: 47.066
147
+ - task:
148
+ type: Retrieval
149
+ dataset:
150
+ type: BeIR/cqadupstack
151
+ name: MTEB CQADupstackEnglishRetrieval
152
+ config: default
153
+ split: test
154
+ revision: None
155
+ metrics:
156
+ - type: map_at_1
157
+ value: 29.828
158
+ - type: map_at_10
159
+ value: 39.312999999999995
160
+ - type: map_at_100
161
+ value: 40.487
162
+ - type: map_at_1000
163
+ value: 40.607
164
+ - type: map_at_3
165
+ value: 36.525
166
+ - type: map_at_5
167
+ value: 38.121
168
+ - type: mrr_at_1
169
+ value: 37.197
170
+ - type: mrr_at_10
171
+ value: 45.091
172
+ - type: mrr_at_100
173
+ value: 45.726
174
+ - type: mrr_at_1000
175
+ value: 45.769999999999996
176
+ - type: mrr_at_3
177
+ value: 42.856
178
+ - type: mrr_at_5
179
+ value: 44.056
180
+ - type: ndcg_at_1
181
+ value: 37.197
182
+ - type: ndcg_at_10
183
+ value: 44.737
184
+ - type: ndcg_at_100
185
+ value: 49.02
186
+ - type: ndcg_at_1000
187
+ value: 51.052
188
+ - type: ndcg_at_3
189
+ value: 40.685
190
+ - type: ndcg_at_5
191
+ value: 42.519
192
+ - type: precision_at_1
193
+ value: 37.197
194
+ - type: precision_at_10
195
+ value: 8.363
196
+ - type: precision_at_100
197
+ value: 1.329
198
+ - type: precision_at_1000
199
+ value: 0.179
200
+ - type: precision_at_3
201
+ value: 19.533
202
+ - type: precision_at_5
203
+ value: 13.732
204
+ - type: recall_at_1
205
+ value: 29.828
206
+ - type: recall_at_10
207
+ value: 54.339000000000006
208
+ - type: recall_at_100
209
+ value: 72.217
210
+ - type: recall_at_1000
211
+ value: 85.185
212
+ - type: recall_at_3
213
+ value: 42.331
214
+ - type: recall_at_5
215
+ value: 47.612
216
+ - task:
217
+ type: Retrieval
218
+ dataset:
219
+ type: BeIR/cqadupstack
220
+ name: MTEB CQADupstackGamingRetrieval
221
+ config: default
222
+ split: test
223
+ revision: None
224
+ metrics:
225
+ - type: map_at_1
226
+ value: 37.919000000000004
227
+ - type: map_at_10
228
+ value: 49.225
229
+ - type: map_at_100
230
+ value: 50.306
231
+ - type: map_at_1000
232
+ value: 50.364
233
+ - type: map_at_3
234
+ value: 46.459
235
+ - type: map_at_5
236
+ value: 48.173
237
+ - type: mrr_at_1
238
+ value: 43.072
239
+ - type: mrr_at_10
240
+ value: 52.437
241
+ - type: mrr_at_100
242
+ value: 53.2
243
+ - type: mrr_at_1000
244
+ value: 53.233
245
+ - type: mrr_at_3
246
+ value: 50.219
247
+ - type: mrr_at_5
248
+ value: 51.629999999999995
249
+ - type: ndcg_at_1
250
+ value: 43.072
251
+ - type: ndcg_at_10
252
+ value: 54.468
253
+ - type: ndcg_at_100
254
+ value: 58.912
255
+ - type: ndcg_at_1000
256
+ value: 60.179
257
+ - type: ndcg_at_3
258
+ value: 49.836999999999996
259
+ - type: ndcg_at_5
260
+ value: 52.371
261
+ - type: precision_at_1
262
+ value: 43.072
263
+ - type: precision_at_10
264
+ value: 8.52
265
+ - type: precision_at_100
266
+ value: 1.168
267
+ - type: precision_at_1000
268
+ value: 0.133
269
+ - type: precision_at_3
270
+ value: 21.923000000000002
271
+ - type: precision_at_5
272
+ value: 14.997
273
+ - type: recall_at_1
274
+ value: 37.919000000000004
275
+ - type: recall_at_10
276
+ value: 66.682
277
+ - type: recall_at_100
278
+ value: 85.81
279
+ - type: recall_at_1000
280
+ value: 94.812
281
+ - type: recall_at_3
282
+ value: 54.515
283
+ - type: recall_at_5
284
+ value: 60.684000000000005
285
+ - task:
286
+ type: Retrieval
287
+ dataset:
288
+ type: BeIR/cqadupstack
289
+ name: MTEB CQADupstackGisRetrieval
290
+ config: default
291
+ split: test
292
+ revision: None
293
+ metrics:
294
+ - type: map_at_1
295
+ value: 21.04
296
+ - type: map_at_10
297
+ value: 27.665
298
+ - type: map_at_100
299
+ value: 28.716
300
+ - type: map_at_1000
301
+ value: 28.794999999999998
302
+ - type: map_at_3
303
+ value: 25.338
304
+ - type: map_at_5
305
+ value: 26.815
306
+ - type: mrr_at_1
307
+ value: 22.712
308
+ - type: mrr_at_10
309
+ value: 29.447000000000003
310
+ - type: mrr_at_100
311
+ value: 30.457
312
+ - type: mrr_at_1000
313
+ value: 30.522
314
+ - type: mrr_at_3
315
+ value: 27.119
316
+ - type: mrr_at_5
317
+ value: 28.582
318
+ - type: ndcg_at_1
319
+ value: 22.712
320
+ - type: ndcg_at_10
321
+ value: 31.77
322
+ - type: ndcg_at_100
323
+ value: 37.104
324
+ - type: ndcg_at_1000
325
+ value: 39.371
326
+ - type: ndcg_at_3
327
+ value: 27.171
328
+ - type: ndcg_at_5
329
+ value: 29.698999999999998
330
+ - type: precision_at_1
331
+ value: 22.712
332
+ - type: precision_at_10
333
+ value: 4.859
334
+ - type: precision_at_100
335
+ value: 0.7929999999999999
336
+ - type: precision_at_1000
337
+ value: 0.10300000000000001
338
+ - type: precision_at_3
339
+ value: 11.299
340
+ - type: precision_at_5
341
+ value: 8.203000000000001
342
+ - type: recall_at_1
343
+ value: 21.04
344
+ - type: recall_at_10
345
+ value: 42.848000000000006
346
+ - type: recall_at_100
347
+ value: 67.694
348
+ - type: recall_at_1000
349
+ value: 85.179
350
+ - type: recall_at_3
351
+ value: 30.54
352
+ - type: recall_at_5
353
+ value: 36.555
354
+ - task:
355
+ type: Retrieval
356
+ dataset:
357
+ type: BeIR/cqadupstack
358
+ name: MTEB CQADupstackMathematicaRetrieval
359
+ config: default
360
+ split: test
361
+ revision: None
362
+ metrics:
363
+ - type: map_at_1
364
+ value: 13.403
365
+ - type: map_at_10
366
+ value: 19.663
367
+ - type: map_at_100
368
+ value: 20.799
369
+ - type: map_at_1000
370
+ value: 20.915
371
+ - type: map_at_3
372
+ value: 17.465
373
+ - type: map_at_5
374
+ value: 18.665000000000003
375
+ - type: mrr_at_1
376
+ value: 16.418
377
+ - type: mrr_at_10
378
+ value: 23.394000000000002
379
+ - type: mrr_at_100
380
+ value: 24.363
381
+ - type: mrr_at_1000
382
+ value: 24.44
383
+ - type: mrr_at_3
384
+ value: 20.916
385
+ - type: mrr_at_5
386
+ value: 22.241
387
+ - type: ndcg_at_1
388
+ value: 16.418
389
+ - type: ndcg_at_10
390
+ value: 24.013
391
+ - type: ndcg_at_100
392
+ value: 29.62
393
+ - type: ndcg_at_1000
394
+ value: 32.518
395
+ - type: ndcg_at_3
396
+ value: 19.747
397
+ - type: ndcg_at_5
398
+ value: 21.689
399
+ - type: precision_at_1
400
+ value: 16.418
401
+ - type: precision_at_10
402
+ value: 4.515000000000001
403
+ - type: precision_at_100
404
+ value: 0.8410000000000001
405
+ - type: precision_at_1000
406
+ value: 0.123
407
+ - type: precision_at_3
408
+ value: 9.411
409
+ - type: precision_at_5
410
+ value: 6.965000000000001
411
+ - type: recall_at_1
412
+ value: 13.403
413
+ - type: recall_at_10
414
+ value: 33.731
415
+ - type: recall_at_100
416
+ value: 58.743
417
+ - type: recall_at_1000
418
+ value: 79.343
419
+ - type: recall_at_3
420
+ value: 22.148
421
+ - type: recall_at_5
422
+ value: 26.998
423
+ - task:
424
+ type: Retrieval
425
+ dataset:
426
+ type: BeIR/cqadupstack
427
+ name: MTEB CQADupstackPhysicsRetrieval
428
+ config: default
429
+ split: test
430
+ revision: None
431
+ metrics:
432
+ - type: map_at_1
433
+ value: 25.782
434
+ - type: map_at_10
435
+ value: 34.891
436
+ - type: map_at_100
437
+ value: 36.186
438
+ - type: map_at_1000
439
+ value: 36.303999999999995
440
+ - type: map_at_3
441
+ value: 32.099
442
+ - type: map_at_5
443
+ value: 33.777
444
+ - type: mrr_at_1
445
+ value: 30.895
446
+ - type: mrr_at_10
447
+ value: 40.049
448
+ - type: mrr_at_100
449
+ value: 40.953
450
+ - type: mrr_at_1000
451
+ value: 41.0
452
+ - type: mrr_at_3
453
+ value: 37.424
454
+ - type: mrr_at_5
455
+ value: 39.07
456
+ - type: ndcg_at_1
457
+ value: 30.895
458
+ - type: ndcg_at_10
459
+ value: 40.436
460
+ - type: ndcg_at_100
461
+ value: 46.046
462
+ - type: ndcg_at_1000
463
+ value: 48.324
464
+ - type: ndcg_at_3
465
+ value: 35.66
466
+ - type: ndcg_at_5
467
+ value: 38.167
468
+ - type: precision_at_1
469
+ value: 30.895
470
+ - type: precision_at_10
471
+ value: 7.151000000000001
472
+ - type: precision_at_100
473
+ value: 1.171
474
+ - type: precision_at_1000
475
+ value: 0.155
476
+ - type: precision_at_3
477
+ value: 16.619
478
+ - type: precision_at_5
479
+ value: 11.935
480
+ - type: recall_at_1
481
+ value: 25.782
482
+ - type: recall_at_10
483
+ value: 52.013
484
+ - type: recall_at_100
485
+ value: 75.736
486
+ - type: recall_at_1000
487
+ value: 90.823
488
+ - type: recall_at_3
489
+ value: 38.763
490
+ - type: recall_at_5
491
+ value: 45.023
492
+ - task:
493
+ type: Retrieval
494
+ dataset:
495
+ type: BeIR/cqadupstack
496
+ name: MTEB CQADupstackProgrammersRetrieval
497
+ config: default
498
+ split: test
499
+ revision: None
500
+ metrics:
501
+ - type: map_at_1
502
+ value: 22.491
503
+ - type: map_at_10
504
+ value: 30.434
505
+ - type: map_at_100
506
+ value: 31.611
507
+ - type: map_at_1000
508
+ value: 31.732
509
+ - type: map_at_3
510
+ value: 27.776
511
+ - type: map_at_5
512
+ value: 29.271
513
+ - type: mrr_at_1
514
+ value: 27.74
515
+ - type: mrr_at_10
516
+ value: 34.964
517
+ - type: mrr_at_100
518
+ value: 35.943000000000005
519
+ - type: mrr_at_1000
520
+ value: 36.012
521
+ - type: mrr_at_3
522
+ value: 32.667
523
+ - type: mrr_at_5
524
+ value: 33.975
525
+ - type: ndcg_at_1
526
+ value: 27.74
527
+ - type: ndcg_at_10
528
+ value: 35.32
529
+ - type: ndcg_at_100
530
+ value: 40.812
531
+ - type: ndcg_at_1000
532
+ value: 43.49
533
+ - type: ndcg_at_3
534
+ value: 30.843999999999998
535
+ - type: ndcg_at_5
536
+ value: 32.838
537
+ - type: precision_at_1
538
+ value: 27.74
539
+ - type: precision_at_10
540
+ value: 6.358
541
+ - type: precision_at_100
542
+ value: 1.078
543
+ - type: precision_at_1000
544
+ value: 0.147
545
+ - type: precision_at_3
546
+ value: 14.421999999999999
547
+ - type: precision_at_5
548
+ value: 10.32
549
+ - type: recall_at_1
550
+ value: 22.491
551
+ - type: recall_at_10
552
+ value: 45.659
553
+ - type: recall_at_100
554
+ value: 69.303
555
+ - type: recall_at_1000
556
+ value: 87.849
557
+ - type: recall_at_3
558
+ value: 33.155
559
+ - type: recall_at_5
560
+ value: 38.369
561
+ - task:
562
+ type: Retrieval
563
+ dataset:
564
+ type: BeIR/cqadupstack
565
+ name: MTEB CQADupstackRetrieval
566
+ config: default
567
+ split: test
568
+ revision: None
569
+ metrics:
570
+ - type: map_at_1
571
+ value: 22.955500000000008
572
+ - type: map_at_10
573
+ value: 30.754000000000005
574
+ - type: map_at_100
575
+ value: 31.85208333333333
576
+ - type: map_at_1000
577
+ value: 31.968416666666666
578
+ - type: map_at_3
579
+ value: 28.35166666666667
580
+ - type: map_at_5
581
+ value: 29.717333333333336
582
+ - type: mrr_at_1
583
+ value: 27.0815
584
+ - type: mrr_at_10
585
+ value: 34.50116666666666
586
+ - type: mrr_at_100
587
+ value: 35.361583333333336
588
+ - type: mrr_at_1000
589
+ value: 35.42583333333334
590
+ - type: mrr_at_3
591
+ value: 32.30499999999999
592
+ - type: mrr_at_5
593
+ value: 33.56175
594
+ - type: ndcg_at_1
595
+ value: 27.0815
596
+ - type: ndcg_at_10
597
+ value: 35.40033333333333
598
+ - type: ndcg_at_100
599
+ value: 40.3485
600
+ - type: ndcg_at_1000
601
+ value: 42.86816666666667
602
+ - type: ndcg_at_3
603
+ value: 31.24325
604
+ - type: ndcg_at_5
605
+ value: 33.21525
606
+ - type: precision_at_1
607
+ value: 27.0815
608
+ - type: precision_at_10
609
+ value: 6.118666666666667
610
+ - type: precision_at_100
611
+ value: 1.0085833333333334
612
+ - type: precision_at_1000
613
+ value: 0.14150000000000001
614
+ - type: precision_at_3
615
+ value: 14.19175
616
+ - type: precision_at_5
617
+ value: 10.064583333333331
618
+ - type: recall_at_1
619
+ value: 22.955500000000008
620
+ - type: recall_at_10
621
+ value: 45.51058333333333
622
+ - type: recall_at_100
623
+ value: 67.49925
624
+ - type: recall_at_1000
625
+ value: 85.24766666666666
626
+ - type: recall_at_3
627
+ value: 33.885
628
+ - type: recall_at_5
629
+ value: 38.99608333333334
630
+ - task:
631
+ type: Retrieval
632
+ dataset:
633
+ type: BeIR/cqadupstack
634
+ name: MTEB CQADupstackStatsRetrieval
635
+ config: default
636
+ split: test
637
+ revision: None
638
+ metrics:
639
+ - type: map_at_1
640
+ value: 21.371000000000002
641
+ - type: map_at_10
642
+ value: 27.532
643
+ - type: map_at_100
644
+ value: 28.443
645
+ - type: map_at_1000
646
+ value: 28.525
647
+ - type: map_at_3
648
+ value: 25.689
649
+ - type: map_at_5
650
+ value: 26.677
651
+ - type: mrr_at_1
652
+ value: 24.08
653
+ - type: mrr_at_10
654
+ value: 30.128
655
+ - type: mrr_at_100
656
+ value: 30.953999999999997
657
+ - type: mrr_at_1000
658
+ value: 31.022
659
+ - type: mrr_at_3
660
+ value: 28.298000000000002
661
+ - type: mrr_at_5
662
+ value: 29.317
663
+ - type: ndcg_at_1
664
+ value: 24.08
665
+ - type: ndcg_at_10
666
+ value: 31.212
667
+ - type: ndcg_at_100
668
+ value: 35.72
669
+ - type: ndcg_at_1000
670
+ value: 38.061
671
+ - type: ndcg_at_3
672
+ value: 27.705000000000002
673
+ - type: ndcg_at_5
674
+ value: 29.26
675
+ - type: precision_at_1
676
+ value: 24.08
677
+ - type: precision_at_10
678
+ value: 4.8469999999999995
679
+ - type: precision_at_100
680
+ value: 0.753
681
+ - type: precision_at_1000
682
+ value: 0.104
683
+ - type: precision_at_3
684
+ value: 11.759
685
+ - type: precision_at_5
686
+ value: 8.097999999999999
687
+ - type: recall_at_1
688
+ value: 21.371000000000002
689
+ - type: recall_at_10
690
+ value: 40.089000000000006
691
+ - type: recall_at_100
692
+ value: 60.879000000000005
693
+ - type: recall_at_1000
694
+ value: 78.325
695
+ - type: recall_at_3
696
+ value: 30.175
697
+ - type: recall_at_5
698
+ value: 34.168
699
+ - task:
700
+ type: Retrieval
701
+ dataset:
702
+ type: BeIR/cqadupstack
703
+ name: MTEB CQADupstackTexRetrieval
704
+ config: default
705
+ split: test
706
+ revision: None
707
+ metrics:
708
+ - type: map_at_1
709
+ value: 15.043999999999999
710
+ - type: map_at_10
711
+ value: 20.794
712
+ - type: map_at_100
713
+ value: 21.636
714
+ - type: map_at_1000
715
+ value: 21.753
716
+ - type: map_at_3
717
+ value: 19.006
718
+ - type: map_at_5
719
+ value: 19.994999999999997
720
+ - type: mrr_at_1
721
+ value: 18.066
722
+ - type: mrr_at_10
723
+ value: 24.157999999999998
724
+ - type: mrr_at_100
725
+ value: 24.936
726
+ - type: mrr_at_1000
727
+ value: 25.018
728
+ - type: mrr_at_3
729
+ value: 22.345000000000002
730
+ - type: mrr_at_5
731
+ value: 23.396
732
+ - type: ndcg_at_1
733
+ value: 18.066
734
+ - type: ndcg_at_10
735
+ value: 24.584
736
+ - type: ndcg_at_100
737
+ value: 28.869
738
+ - type: ndcg_at_1000
739
+ value: 31.94
740
+ - type: ndcg_at_3
741
+ value: 21.295
742
+ - type: ndcg_at_5
743
+ value: 22.820999999999998
744
+ - type: precision_at_1
745
+ value: 18.066
746
+ - type: precision_at_10
747
+ value: 4.381
748
+ - type: precision_at_100
749
+ value: 0.754
750
+ - type: precision_at_1000
751
+ value: 0.117
752
+ - type: precision_at_3
753
+ value: 9.956
754
+ - type: precision_at_5
755
+ value: 7.123
756
+ - type: recall_at_1
757
+ value: 15.043999999999999
758
+ - type: recall_at_10
759
+ value: 32.665
760
+ - type: recall_at_100
761
+ value: 52.342
762
+ - type: recall_at_1000
763
+ value: 74.896
764
+ - type: recall_at_3
765
+ value: 23.402
766
+ - type: recall_at_5
767
+ value: 27.397
768
+ - task:
769
+ type: Retrieval
770
+ dataset:
771
+ type: BeIR/cqadupstack
772
+ name: MTEB CQADupstackUnixRetrieval
773
+ config: default
774
+ split: test
775
+ revision: None
776
+ metrics:
777
+ - type: map_at_1
778
+ value: 22.712
779
+ - type: map_at_10
780
+ value: 28.963
781
+ - type: map_at_100
782
+ value: 29.934
783
+ - type: map_at_1000
784
+ value: 30.049
785
+ - type: map_at_3
786
+ value: 27.086
787
+ - type: map_at_5
788
+ value: 28.163
789
+ - type: mrr_at_1
790
+ value: 26.586
791
+ - type: mrr_at_10
792
+ value: 32.792
793
+ - type: mrr_at_100
794
+ value: 33.692
795
+ - type: mrr_at_1000
796
+ value: 33.767
797
+ - type: mrr_at_3
798
+ value: 30.939
799
+ - type: mrr_at_5
800
+ value: 32.012
801
+ - type: ndcg_at_1
802
+ value: 26.586
803
+ - type: ndcg_at_10
804
+ value: 32.92
805
+ - type: ndcg_at_100
806
+ value: 37.891000000000005
807
+ - type: ndcg_at_1000
808
+ value: 40.647
809
+ - type: ndcg_at_3
810
+ value: 29.465000000000003
811
+ - type: ndcg_at_5
812
+ value: 31.106
813
+ - type: precision_at_1
814
+ value: 26.586
815
+ - type: precision_at_10
816
+ value: 5.177
817
+ - type: precision_at_100
818
+ value: 0.8540000000000001
819
+ - type: precision_at_1000
820
+ value: 0.121
821
+ - type: precision_at_3
822
+ value: 12.903999999999998
823
+ - type: precision_at_5
824
+ value: 8.881
825
+ - type: recall_at_1
826
+ value: 22.712
827
+ - type: recall_at_10
828
+ value: 41.382000000000005
829
+ - type: recall_at_100
830
+ value: 63.866
831
+ - type: recall_at_1000
832
+ value: 83.29299999999999
833
+ - type: recall_at_3
834
+ value: 31.739
835
+ - type: recall_at_5
836
+ value: 35.988
837
+ - task:
838
+ type: Retrieval
839
+ dataset:
840
+ type: BeIR/cqadupstack
841
+ name: MTEB CQADupstackWebmastersRetrieval
842
+ config: default
843
+ split: test
844
+ revision: None
845
+ metrics:
846
+ - type: map_at_1
847
+ value: 19.64
848
+ - type: map_at_10
849
+ value: 28.432000000000002
850
+ - type: map_at_100
851
+ value: 29.848999999999997
852
+ - type: map_at_1000
853
+ value: 30.072
854
+ - type: map_at_3
855
+ value: 25.862000000000002
856
+ - type: map_at_5
857
+ value: 27.339000000000002
858
+ - type: mrr_at_1
859
+ value: 24.308
860
+ - type: mrr_at_10
861
+ value: 32.475
862
+ - type: mrr_at_100
863
+ value: 33.404
864
+ - type: mrr_at_1000
865
+ value: 33.477000000000004
866
+ - type: mrr_at_3
867
+ value: 30.203999999999997
868
+ - type: mrr_at_5
869
+ value: 31.558000000000003
870
+ - type: ndcg_at_1
871
+ value: 24.308
872
+ - type: ndcg_at_10
873
+ value: 33.79
874
+ - type: ndcg_at_100
875
+ value: 39.113
876
+ - type: ndcg_at_1000
877
+ value: 42.388
878
+ - type: ndcg_at_3
879
+ value: 29.738999999999997
880
+ - type: ndcg_at_5
881
+ value: 31.734
882
+ - type: precision_at_1
883
+ value: 24.308
884
+ - type: precision_at_10
885
+ value: 6.621
886
+ - type: precision_at_100
887
+ value: 1.322
888
+ - type: precision_at_1000
889
+ value: 0.22499999999999998
890
+ - type: precision_at_3
891
+ value: 14.032
892
+ - type: precision_at_5
893
+ value: 10.435
894
+ - type: recall_at_1
895
+ value: 19.64
896
+ - type: recall_at_10
897
+ value: 44.147999999999996
898
+ - type: recall_at_100
899
+ value: 68.31099999999999
900
+ - type: recall_at_1000
901
+ value: 90.022
902
+ - type: recall_at_3
903
+ value: 32.275999999999996
904
+ - type: recall_at_5
905
+ value: 37.717
906
+ - task:
907
+ type: Retrieval
908
+ dataset:
909
+ type: BeIR/cqadupstack
910
+ name: MTEB CQADupstackWordpressRetrieval
911
+ config: default
912
+ split: test
913
+ revision: None
914
+ metrics:
915
+ - type: map_at_1
916
+ value: 17.443
917
+ - type: map_at_10
918
+ value: 23.45
919
+ - type: map_at_100
920
+ value: 24.41
921
+ - type: map_at_1000
922
+ value: 24.515
923
+ - type: map_at_3
924
+ value: 21.478
925
+ - type: map_at_5
926
+ value: 22.545
927
+ - type: mrr_at_1
928
+ value: 18.854000000000003
929
+ - type: mrr_at_10
930
+ value: 25.174999999999997
931
+ - type: mrr_at_100
932
+ value: 26.099
933
+ - type: mrr_at_1000
934
+ value: 26.179999999999996
935
+ - type: mrr_at_3
936
+ value: 23.352
937
+ - type: mrr_at_5
938
+ value: 24.331
939
+ - type: ndcg_at_1
940
+ value: 18.854000000000003
941
+ - type: ndcg_at_10
942
+ value: 26.99
943
+ - type: ndcg_at_100
944
+ value: 31.823
945
+ - type: ndcg_at_1000
946
+ value: 34.657
947
+ - type: ndcg_at_3
948
+ value: 23.195
949
+ - type: ndcg_at_5
950
+ value: 24.953
951
+ - type: precision_at_1
952
+ value: 18.854000000000003
953
+ - type: precision_at_10
954
+ value: 4.1770000000000005
955
+ - type: precision_at_100
956
+ value: 0.7100000000000001
957
+ - type: precision_at_1000
958
+ value: 0.104
959
+ - type: precision_at_3
960
+ value: 9.797
961
+ - type: precision_at_5
962
+ value: 6.839
963
+ - type: recall_at_1
964
+ value: 17.443
965
+ - type: recall_at_10
966
+ value: 36.22
967
+ - type: recall_at_100
968
+ value: 58.548
969
+ - type: recall_at_1000
970
+ value: 80.104
971
+ - type: recall_at_3
972
+ value: 25.995
973
+ - type: recall_at_5
974
+ value: 30.375999999999998
975
+ - task:
976
+ type: Retrieval
977
+ dataset:
978
+ type: climate-fever
979
+ name: MTEB ClimateFEVER
980
+ config: default
981
+ split: test
982
+ revision: None
983
+ metrics:
984
+ - type: map_at_1
985
+ value: 10.283000000000001
986
+ - type: map_at_10
987
+ value: 16.121
988
+ - type: map_at_100
989
+ value: 17.818
990
+ - type: map_at_1000
991
+ value: 18.015
992
+ - type: map_at_3
993
+ value: 13.655000000000001
994
+ - type: map_at_5
995
+ value: 14.854999999999999
996
+ - type: mrr_at_1
997
+ value: 22.15
998
+ - type: mrr_at_10
999
+ value: 31.139
1000
+ - type: mrr_at_100
1001
+ value: 32.336999999999996
1002
+ - type: mrr_at_1000
1003
+ value: 32.39
1004
+ - type: mrr_at_3
1005
+ value: 27.861000000000004
1006
+ - type: mrr_at_5
1007
+ value: 29.754
1008
+ - type: ndcg_at_1
1009
+ value: 22.15
1010
+ - type: ndcg_at_10
1011
+ value: 22.852
1012
+ - type: ndcg_at_100
1013
+ value: 30.233999999999998
1014
+ - type: ndcg_at_1000
1015
+ value: 34.02
1016
+ - type: ndcg_at_3
1017
+ value: 18.394
1018
+ - type: ndcg_at_5
1019
+ value: 19.973
1020
+ - type: precision_at_1
1021
+ value: 22.15
1022
+ - type: precision_at_10
1023
+ value: 6.912
1024
+ - type: precision_at_100
1025
+ value: 1.4829999999999999
1026
+ - type: precision_at_1000
1027
+ value: 0.218
1028
+ - type: precision_at_3
1029
+ value: 12.899
1030
+ - type: precision_at_5
1031
+ value: 10.111
1032
+ - type: recall_at_1
1033
+ value: 10.283000000000001
1034
+ - type: recall_at_10
1035
+ value: 27.587
1036
+ - type: recall_at_100
1037
+ value: 53.273
1038
+ - type: recall_at_1000
1039
+ value: 74.74499999999999
1040
+ - type: recall_at_3
1041
+ value: 16.897000000000002
1042
+ - type: recall_at_5
1043
+ value: 21.084
1044
+ - task:
1045
+ type: Retrieval
1046
+ dataset:
1047
+ type: dbpedia-entity
1048
+ name: MTEB DBPedia
1049
+ config: default
1050
+ split: test
1051
+ revision: None
1052
+ metrics:
1053
+ - type: map_at_1
1054
+ value: 9.038
1055
+ - type: map_at_10
1056
+ value: 20.153
1057
+ - type: map_at_100
1058
+ value: 28.610999999999997
1059
+ - type: map_at_1000
1060
+ value: 30.285
1061
+ - type: map_at_3
1062
+ value: 14.249
1063
+ - type: map_at_5
1064
+ value: 16.715
1065
+ - type: mrr_at_1
1066
+ value: 66.75
1067
+ - type: mrr_at_10
1068
+ value: 74.477
1069
+ - type: mrr_at_100
1070
+ value: 74.678
1071
+ - type: mrr_at_1000
1072
+ value: 74.695
1073
+ - type: mrr_at_3
1074
+ value: 72.625
1075
+ - type: mrr_at_5
1076
+ value: 73.8
1077
+ - type: ndcg_at_1
1078
+ value: 55.125
1079
+ - type: ndcg_at_10
1080
+ value: 41.837999999999994
1081
+ - type: ndcg_at_100
1082
+ value: 46.182
1083
+ - type: ndcg_at_1000
1084
+ value: 53.144000000000005
1085
+ - type: ndcg_at_3
1086
+ value: 46.084
1087
+ - type: ndcg_at_5
1088
+ value: 43.751
1089
+ - type: precision_at_1
1090
+ value: 66.75
1091
+ - type: precision_at_10
1092
+ value: 33.775
1093
+ - type: precision_at_100
1094
+ value: 10.803
1095
+ - type: precision_at_1000
1096
+ value: 2.191
1097
+ - type: precision_at_3
1098
+ value: 49.5
1099
+ - type: precision_at_5
1100
+ value: 42.4
1101
+ - type: recall_at_1
1102
+ value: 9.038
1103
+ - type: recall_at_10
1104
+ value: 25.988
1105
+ - type: recall_at_100
1106
+ value: 52.158
1107
+ - type: recall_at_1000
1108
+ value: 74.617
1109
+ - type: recall_at_3
1110
+ value: 15.675
1111
+ - type: recall_at_5
1112
+ value: 19.570999999999998
1113
+ - task:
1114
+ type: Retrieval
1115
+ dataset:
1116
+ type: fever
1117
+ name: MTEB FEVER
1118
+ config: default
1119
+ split: test
1120
+ revision: None
1121
+ metrics:
1122
+ - type: map_at_1
1123
+ value: 62.551
1124
+ - type: map_at_10
1125
+ value: 73.124
1126
+ - type: map_at_100
1127
+ value: 73.432
1128
+ - type: map_at_1000
1129
+ value: 73.447
1130
+ - type: map_at_3
1131
+ value: 71.297
1132
+ - type: map_at_5
1133
+ value: 72.489
1134
+ - type: mrr_at_1
1135
+ value: 67.23700000000001
1136
+ - type: mrr_at_10
1137
+ value: 77.438
1138
+ - type: mrr_at_100
1139
+ value: 77.645
1140
+ - type: mrr_at_1000
1141
+ value: 77.64999999999999
1142
+ - type: mrr_at_3
1143
+ value: 75.788
1144
+ - type: mrr_at_5
1145
+ value: 76.886
1146
+ - type: ndcg_at_1
1147
+ value: 67.23700000000001
1148
+ - type: ndcg_at_10
1149
+ value: 78.306
1150
+ - type: ndcg_at_100
1151
+ value: 79.526
1152
+ - type: ndcg_at_1000
1153
+ value: 79.825
1154
+ - type: ndcg_at_3
1155
+ value: 74.961
1156
+ - type: ndcg_at_5
1157
+ value: 76.91900000000001
1158
+ - type: precision_at_1
1159
+ value: 67.23700000000001
1160
+ - type: precision_at_10
1161
+ value: 9.875
1162
+ - type: precision_at_100
1163
+ value: 1.065
1164
+ - type: precision_at_1000
1165
+ value: 0.11
1166
+ - type: precision_at_3
1167
+ value: 29.353
1168
+ - type: precision_at_5
1169
+ value: 18.749
1170
+ - type: recall_at_1
1171
+ value: 62.551
1172
+ - type: recall_at_10
1173
+ value: 90.011
1174
+ - type: recall_at_100
1175
+ value: 95.06
1176
+ - type: recall_at_1000
1177
+ value: 97.033
1178
+ - type: recall_at_3
1179
+ value: 81.081
1180
+ - type: recall_at_5
1181
+ value: 85.87599999999999
1182
+ - task:
1183
+ type: Retrieval
1184
+ dataset:
1185
+ type: fiqa
1186
+ name: MTEB FiQA2018
1187
+ config: default
1188
+ split: test
1189
+ revision: None
1190
+ metrics:
1191
+ - type: map_at_1
1192
+ value: 17.636
1193
+ - type: map_at_10
1194
+ value: 28.627000000000002
1195
+ - type: map_at_100
1196
+ value: 30.262
1197
+ - type: map_at_1000
1198
+ value: 30.442000000000004
1199
+ - type: map_at_3
1200
+ value: 25.091
1201
+ - type: map_at_5
1202
+ value: 27.12
1203
+ - type: mrr_at_1
1204
+ value: 34.259
1205
+ - type: mrr_at_10
1206
+ value: 42.733
1207
+ - type: mrr_at_100
1208
+ value: 43.613
1209
+ - type: mrr_at_1000
1210
+ value: 43.663000000000004
1211
+ - type: mrr_at_3
1212
+ value: 40.406
1213
+ - type: mrr_at_5
1214
+ value: 41.687000000000005
1215
+ - type: ndcg_at_1
1216
+ value: 34.259
1217
+ - type: ndcg_at_10
1218
+ value: 35.613
1219
+ - type: ndcg_at_100
1220
+ value: 42.027
1221
+ - type: ndcg_at_1000
1222
+ value: 45.336999999999996
1223
+ - type: ndcg_at_3
1224
+ value: 32.435
1225
+ - type: ndcg_at_5
1226
+ value: 33.482
1227
+ - type: precision_at_1
1228
+ value: 34.259
1229
+ - type: precision_at_10
1230
+ value: 9.66
1231
+ - type: precision_at_100
1232
+ value: 1.6219999999999999
1233
+ - type: precision_at_1000
1234
+ value: 0.22300000000000003
1235
+ - type: precision_at_3
1236
+ value: 21.399
1237
+ - type: precision_at_5
1238
+ value: 15.741
1239
+ - type: recall_at_1
1240
+ value: 17.636
1241
+ - type: recall_at_10
1242
+ value: 41.955999999999996
1243
+ - type: recall_at_100
1244
+ value: 66.17
1245
+ - type: recall_at_1000
1246
+ value: 85.79599999999999
1247
+ - type: recall_at_3
1248
+ value: 29.853
1249
+ - type: recall_at_5
1250
+ value: 35.18
1251
+ - task:
1252
+ type: Retrieval
1253
+ dataset:
1254
+ type: hotpotqa
1255
+ name: MTEB HotpotQA
1256
+ config: default
1257
+ split: test
1258
+ revision: None
1259
+ metrics:
1260
+ - type: map_at_1
1261
+ value: 39.487
1262
+ - type: map_at_10
1263
+ value: 56.765
1264
+ - type: map_at_100
1265
+ value: 57.616
1266
+ - type: map_at_1000
1267
+ value: 57.679
1268
+ - type: map_at_3
1269
+ value: 53.616
1270
+ - type: map_at_5
1271
+ value: 55.623999999999995
1272
+ - type: mrr_at_1
1273
+ value: 78.974
1274
+ - type: mrr_at_10
1275
+ value: 84.622
1276
+ - type: mrr_at_100
1277
+ value: 84.776
1278
+ - type: mrr_at_1000
1279
+ value: 84.783
1280
+ - type: mrr_at_3
1281
+ value: 83.747
1282
+ - type: mrr_at_5
1283
+ value: 84.27900000000001
1284
+ - type: ndcg_at_1
1285
+ value: 78.974
1286
+ - type: ndcg_at_10
1287
+ value: 66.164
1288
+ - type: ndcg_at_100
1289
+ value: 69.03099999999999
1290
+ - type: ndcg_at_1000
1291
+ value: 70.261
1292
+ - type: ndcg_at_3
1293
+ value: 61.712
1294
+ - type: ndcg_at_5
1295
+ value: 64.22
1296
+ - type: precision_at_1
1297
+ value: 78.974
1298
+ - type: precision_at_10
1299
+ value: 13.520999999999999
1300
+ - type: precision_at_100
1301
+ value: 1.575
1302
+ - type: precision_at_1000
1303
+ value: 0.174
1304
+ - type: precision_at_3
1305
+ value: 38.501000000000005
1306
+ - type: precision_at_5
1307
+ value: 25.083
1308
+ - type: recall_at_1
1309
+ value: 39.487
1310
+ - type: recall_at_10
1311
+ value: 67.60300000000001
1312
+ - type: recall_at_100
1313
+ value: 78.744
1314
+ - type: recall_at_1000
1315
+ value: 86.914
1316
+ - type: recall_at_3
1317
+ value: 57.752
1318
+ - type: recall_at_5
1319
+ value: 62.708
1320
+ - task:
1321
+ type: Retrieval
1322
+ dataset:
1323
+ type: msmarco
1324
+ name: MTEB MSMARCO
1325
+ config: default
1326
+ split: dev
1327
+ revision: None
1328
+ metrics:
1329
+ - type: map_at_1
1330
+ value: 24.224999999999998
1331
+ - type: map_at_10
1332
+ value: 37.791000000000004
1333
+ - type: map_at_100
1334
+ value: 38.899
1335
+ - type: map_at_1000
1336
+ value: 38.937
1337
+ - type: map_at_3
1338
+ value: 33.584
1339
+ - type: map_at_5
1340
+ value: 36.142
1341
+ - type: mrr_at_1
1342
+ value: 24.871
1343
+ - type: mrr_at_10
1344
+ value: 38.361000000000004
1345
+ - type: mrr_at_100
1346
+ value: 39.394
1347
+ - type: mrr_at_1000
1348
+ value: 39.427
1349
+ - type: mrr_at_3
1350
+ value: 34.224
1351
+ - type: mrr_at_5
1352
+ value: 36.767
1353
+ - type: ndcg_at_1
1354
+ value: 24.871
1355
+ - type: ndcg_at_10
1356
+ value: 45.231
1357
+ - type: ndcg_at_100
1358
+ value: 50.42100000000001
1359
+ - type: ndcg_at_1000
1360
+ value: 51.329
1361
+ - type: ndcg_at_3
1362
+ value: 36.77
1363
+ - type: ndcg_at_5
1364
+ value: 41.33
1365
+ - type: precision_at_1
1366
+ value: 24.871
1367
+ - type: precision_at_10
1368
+ value: 7.124999999999999
1369
+ - type: precision_at_100
1370
+ value: 0.971
1371
+ - type: precision_at_1000
1372
+ value: 0.105
1373
+ - type: precision_at_3
1374
+ value: 15.659
1375
+ - type: precision_at_5
1376
+ value: 11.708
1377
+ - type: recall_at_1
1378
+ value: 24.224999999999998
1379
+ - type: recall_at_10
1380
+ value: 68.081
1381
+ - type: recall_at_100
1382
+ value: 91.818
1383
+ - type: recall_at_1000
1384
+ value: 98.65
1385
+ - type: recall_at_3
1386
+ value: 45.355000000000004
1387
+ - type: recall_at_5
1388
+ value: 56.26
1389
+ - task:
1390
+ type: Retrieval
1391
+ dataset:
1392
+ type: nfcorpus
1393
+ name: MTEB NFCorpus
1394
+ config: default
1395
+ split: test
1396
+ revision: None
1397
+ metrics:
1398
+ - type: map_at_1
1399
+ value: 5.904
1400
+ - type: map_at_10
1401
+ value: 12.784
1402
+ - type: map_at_100
1403
+ value: 15.628
1404
+ - type: map_at_1000
1405
+ value: 17.006
1406
+ - type: map_at_3
1407
+ value: 9.695
1408
+ - type: map_at_5
1409
+ value: 10.961
1410
+ - type: mrr_at_1
1411
+ value: 46.44
1412
+ - type: mrr_at_10
1413
+ value: 54.106
1414
+ - type: mrr_at_100
1415
+ value: 54.81700000000001
1416
+ - type: mrr_at_1000
1417
+ value: 54.858
1418
+ - type: mrr_at_3
1419
+ value: 52.837999999999994
1420
+ - type: mrr_at_5
1421
+ value: 53.627
1422
+ - type: ndcg_at_1
1423
+ value: 44.737
1424
+ - type: ndcg_at_10
1425
+ value: 33.967999999999996
1426
+ - type: ndcg_at_100
1427
+ value: 30.451
1428
+ - type: ndcg_at_1000
1429
+ value: 39.151
1430
+ - type: ndcg_at_3
1431
+ value: 39.871
1432
+ - type: ndcg_at_5
1433
+ value: 37.138
1434
+ - type: precision_at_1
1435
+ value: 46.44
1436
+ - type: precision_at_10
1437
+ value: 24.582
1438
+ - type: precision_at_100
1439
+ value: 7.715
1440
+ - type: precision_at_1000
1441
+ value: 2.0500000000000003
1442
+ - type: precision_at_3
1443
+ value: 37.461
1444
+ - type: precision_at_5
1445
+ value: 31.517
1446
+ - type: recall_at_1
1447
+ value: 5.904
1448
+ - type: recall_at_10
1449
+ value: 16.522000000000002
1450
+ - type: recall_at_100
1451
+ value: 29.413
1452
+ - type: recall_at_1000
1453
+ value: 61.611000000000004
1454
+ - type: recall_at_3
1455
+ value: 10.649000000000001
1456
+ - type: recall_at_5
1457
+ value: 12.642999999999999
1458
+ - task:
1459
+ type: Retrieval
1460
+ dataset:
1461
+ type: nq
1462
+ name: MTEB NQ
1463
+ config: default
1464
+ split: test
1465
+ revision: None
1466
+ metrics:
1467
+ - type: map_at_1
1468
+ value: 31.561
1469
+ - type: map_at_10
1470
+ value: 46.406
1471
+ - type: map_at_100
1472
+ value: 47.499
1473
+ - type: map_at_1000
1474
+ value: 47.526
1475
+ - type: map_at_3
1476
+ value: 42.26
1477
+ - type: map_at_5
1478
+ value: 44.724000000000004
1479
+ - type: mrr_at_1
1480
+ value: 35.168
1481
+ - type: mrr_at_10
1482
+ value: 48.914
1483
+ - type: mrr_at_100
1484
+ value: 49.727
1485
+ - type: mrr_at_1000
1486
+ value: 49.744
1487
+ - type: mrr_at_3
1488
+ value: 45.418
1489
+ - type: mrr_at_5
1490
+ value: 47.53
1491
+ - type: ndcg_at_1
1492
+ value: 35.138999999999996
1493
+ - type: ndcg_at_10
1494
+ value: 53.943
1495
+ - type: ndcg_at_100
1496
+ value: 58.50300000000001
1497
+ - type: ndcg_at_1000
1498
+ value: 59.144
1499
+ - type: ndcg_at_3
1500
+ value: 46.135999999999996
1501
+ - type: ndcg_at_5
1502
+ value: 50.227999999999994
1503
+ - type: precision_at_1
1504
+ value: 35.138999999999996
1505
+ - type: precision_at_10
1506
+ value: 8.812000000000001
1507
+ - type: precision_at_100
1508
+ value: 1.138
1509
+ - type: precision_at_1000
1510
+ value: 0.12
1511
+ - type: precision_at_3
1512
+ value: 20.867
1513
+ - type: precision_at_5
1514
+ value: 14.878
1515
+ - type: recall_at_1
1516
+ value: 31.561
1517
+ - type: recall_at_10
1518
+ value: 74.343
1519
+ - type: recall_at_100
1520
+ value: 93.975
1521
+ - type: recall_at_1000
1522
+ value: 98.75699999999999
1523
+ - type: recall_at_3
1524
+ value: 54.169
1525
+ - type: recall_at_5
1526
+ value: 63.56
1527
+ - task:
1528
+ type: Retrieval
1529
+ dataset:
1530
+ type: quora
1531
+ name: MTEB QuoraRetrieval
1532
+ config: default
1533
+ split: test
1534
+ revision: None
1535
+ metrics:
1536
+ - type: map_at_1
1537
+ value: 69.753
1538
+ - type: map_at_10
1539
+ value: 83.56400000000001
1540
+ - type: map_at_100
1541
+ value: 84.19200000000001
1542
+ - type: map_at_1000
1543
+ value: 84.211
1544
+ - type: map_at_3
1545
+ value: 80.568
1546
+ - type: map_at_5
1547
+ value: 82.44500000000001
1548
+ - type: mrr_at_1
1549
+ value: 79.99000000000001
1550
+ - type: mrr_at_10
1551
+ value: 86.542
1552
+ - type: mrr_at_100
1553
+ value: 86.655
1554
+ - type: mrr_at_1000
1555
+ value: 86.656
1556
+ - type: mrr_at_3
1557
+ value: 85.505
1558
+ - type: mrr_at_5
1559
+ value: 86.21
1560
+ - type: ndcg_at_1
1561
+ value: 79.99000000000001
1562
+ - type: ndcg_at_10
1563
+ value: 87.449
1564
+ - type: ndcg_at_100
1565
+ value: 88.739
1566
+ - type: ndcg_at_1000
1567
+ value: 88.87
1568
+ - type: ndcg_at_3
1569
+ value: 84.418
1570
+ - type: ndcg_at_5
1571
+ value: 86.09599999999999
1572
+ - type: precision_at_1
1573
+ value: 79.99000000000001
1574
+ - type: precision_at_10
1575
+ value: 13.236999999999998
1576
+ - type: precision_at_100
1577
+ value: 1.516
1578
+ - type: precision_at_1000
1579
+ value: 0.156
1580
+ - type: precision_at_3
1581
+ value: 36.736999999999995
1582
+ - type: precision_at_5
1583
+ value: 24.227999999999998
1584
+ - type: recall_at_1
1585
+ value: 69.753
1586
+ - type: recall_at_10
1587
+ value: 94.967
1588
+ - type: recall_at_100
1589
+ value: 99.378
1590
+ - type: recall_at_1000
1591
+ value: 99.953
1592
+ - type: recall_at_3
1593
+ value: 86.408
1594
+ - type: recall_at_5
1595
+ value: 91.03
1596
+ - task:
1597
+ type: Retrieval
1598
+ dataset:
1599
+ type: scidocs
1600
+ name: MTEB SCIDOCS
1601
+ config: default
1602
+ split: test
1603
+ revision: None
1604
+ metrics:
1605
+ - type: map_at_1
1606
+ value: 3.8080000000000003
1607
+ - type: map_at_10
1608
+ value: 9.222
1609
+ - type: map_at_100
1610
+ value: 10.779
1611
+ - type: map_at_1000
1612
+ value: 11.027000000000001
1613
+ - type: map_at_3
1614
+ value: 6.729
1615
+ - type: map_at_5
1616
+ value: 7.872999999999999
1617
+ - type: mrr_at_1
1618
+ value: 18.7
1619
+ - type: mrr_at_10
1620
+ value: 28.084999999999997
1621
+ - type: mrr_at_100
1622
+ value: 29.134999999999998
1623
+ - type: mrr_at_1000
1624
+ value: 29.214000000000002
1625
+ - type: mrr_at_3
1626
+ value: 24.917
1627
+ - type: mrr_at_5
1628
+ value: 26.651999999999997
1629
+ - type: ndcg_at_1
1630
+ value: 18.7
1631
+ - type: ndcg_at_10
1632
+ value: 15.969
1633
+ - type: ndcg_at_100
1634
+ value: 22.535
1635
+ - type: ndcg_at_1000
1636
+ value: 27.337
1637
+ - type: ndcg_at_3
1638
+ value: 15.112
1639
+ - type: ndcg_at_5
1640
+ value: 13.089
1641
+ - type: precision_at_1
1642
+ value: 18.7
1643
+ - type: precision_at_10
1644
+ value: 8.32
1645
+ - type: precision_at_100
1646
+ value: 1.786
1647
+ - type: precision_at_1000
1648
+ value: 0.293
1649
+ - type: precision_at_3
1650
+ value: 14.099999999999998
1651
+ - type: precision_at_5
1652
+ value: 11.42
1653
+ - type: recall_at_1
1654
+ value: 3.8080000000000003
1655
+ - type: recall_at_10
1656
+ value: 16.872
1657
+ - type: recall_at_100
1658
+ value: 36.235
1659
+ - type: recall_at_1000
1660
+ value: 59.587
1661
+ - type: recall_at_3
1662
+ value: 8.583
1663
+ - type: recall_at_5
1664
+ value: 11.562999999999999
1665
+ - task:
1666
+ type: Retrieval
1667
+ dataset:
1668
+ type: scifact
1669
+ name: MTEB SciFact
1670
+ config: default
1671
+ split: test
1672
+ revision: None
1673
+ metrics:
1674
+ - type: map_at_1
1675
+ value: 53.994
1676
+ - type: map_at_10
1677
+ value: 63.56
1678
+ - type: map_at_100
1679
+ value: 64.247
1680
+ - type: map_at_1000
1681
+ value: 64.275
1682
+ - type: map_at_3
1683
+ value: 61.23499999999999
1684
+ - type: map_at_5
1685
+ value: 62.638000000000005
1686
+ - type: mrr_at_1
1687
+ value: 57.333
1688
+ - type: mrr_at_10
1689
+ value: 65.23299999999999
1690
+ - type: mrr_at_100
1691
+ value: 65.762
1692
+ - type: mrr_at_1000
1693
+ value: 65.78699999999999
1694
+ - type: mrr_at_3
1695
+ value: 63.556000000000004
1696
+ - type: mrr_at_5
1697
+ value: 64.572
1698
+ - type: ndcg_at_1
1699
+ value: 57.333
1700
+ - type: ndcg_at_10
1701
+ value: 67.88300000000001
1702
+ - type: ndcg_at_100
1703
+ value: 70.99
1704
+ - type: ndcg_at_1000
1705
+ value: 71.66
1706
+ - type: ndcg_at_3
1707
+ value: 64.16
1708
+ - type: ndcg_at_5
1709
+ value: 66.042
1710
+ - type: precision_at_1
1711
+ value: 57.333
1712
+ - type: precision_at_10
1713
+ value: 8.967
1714
+ - type: precision_at_100
1715
+ value: 1.06
1716
+ - type: precision_at_1000
1717
+ value: 0.11199999999999999
1718
+ - type: precision_at_3
1719
+ value: 25.222
1720
+ - type: precision_at_5
1721
+ value: 16.467000000000002
1722
+ - type: recall_at_1
1723
+ value: 53.994
1724
+ - type: recall_at_10
1725
+ value: 79.289
1726
+ - type: recall_at_100
1727
+ value: 93.533
1728
+ - type: recall_at_1000
1729
+ value: 98.667
1730
+ - type: recall_at_3
1731
+ value: 69.267
1732
+ - type: recall_at_5
1733
+ value: 74.128
1734
+ - task:
1735
+ type: Retrieval
1736
+ dataset:
1737
+ type: trec-covid
1738
+ name: MTEB TRECCOVID
1739
+ config: default
1740
+ split: test
1741
+ revision: None
1742
+ metrics:
1743
+ - type: map_at_1
1744
+ value: 0.212
1745
+ - type: map_at_10
1746
+ value: 1.925
1747
+ - type: map_at_100
1748
+ value: 9.235
1749
+ - type: map_at_1000
1750
+ value: 22.111
1751
+ - type: map_at_3
1752
+ value: 0.626
1753
+ - type: map_at_5
1754
+ value: 1.031
1755
+ - type: mrr_at_1
1756
+ value: 82.0
1757
+ - type: mrr_at_10
1758
+ value: 90.5
1759
+ - type: mrr_at_100
1760
+ value: 90.5
1761
+ - type: mrr_at_1000
1762
+ value: 90.5
1763
+ - type: mrr_at_3
1764
+ value: 90.0
1765
+ - type: mrr_at_5
1766
+ value: 90.5
1767
+ - type: ndcg_at_1
1768
+ value: 75.0
1769
+ - type: ndcg_at_10
1770
+ value: 75.851
1771
+ - type: ndcg_at_100
1772
+ value: 53.190000000000005
1773
+ - type: ndcg_at_1000
1774
+ value: 45.507999999999996
1775
+ - type: ndcg_at_3
1776
+ value: 80.19500000000001
1777
+ - type: ndcg_at_5
1778
+ value: 78.448
1779
+ - type: precision_at_1
1780
+ value: 82.0
1781
+ - type: precision_at_10
1782
+ value: 82.6
1783
+ - type: precision_at_100
1784
+ value: 54.48
1785
+ - type: precision_at_1000
1786
+ value: 20.785999999999998
1787
+ - type: precision_at_3
1788
+ value: 86.667
1789
+ - type: precision_at_5
1790
+ value: 85.2
1791
+ - type: recall_at_1
1792
+ value: 0.212
1793
+ - type: recall_at_10
1794
+ value: 2.13
1795
+ - type: recall_at_100
1796
+ value: 12.152000000000001
1797
+ - type: recall_at_1000
1798
+ value: 42.403
1799
+ - type: recall_at_3
1800
+ value: 0.6689999999999999
1801
+ - type: recall_at_5
1802
+ value: 1.121
1803
+ - task:
1804
+ type: Retrieval
1805
+ dataset:
1806
+ type: webis-touche2020
1807
+ name: MTEB Touche2020
1808
+ config: default
1809
+ split: test
1810
+ revision: None
1811
+ metrics:
1812
+ - type: map_at_1
1813
+ value: 2.701
1814
+ - type: map_at_10
1815
+ value: 10.488999999999999
1816
+ - type: map_at_100
1817
+ value: 17.258000000000003
1818
+ - type: map_at_1000
1819
+ value: 18.797
1820
+ - type: map_at_3
1821
+ value: 5.563
1822
+ - type: map_at_5
1823
+ value: 7.268
1824
+ - type: mrr_at_1
1825
+ value: 30.612000000000002
1826
+ - type: mrr_at_10
1827
+ value: 48.197
1828
+ - type: mrr_at_100
1829
+ value: 48.762
1830
+ - type: mrr_at_1000
1831
+ value: 48.762
1832
+ - type: mrr_at_3
1833
+ value: 44.218
1834
+ - type: mrr_at_5
1835
+ value: 46.666999999999994
1836
+ - type: ndcg_at_1
1837
+ value: 28.571
1838
+ - type: ndcg_at_10
1839
+ value: 26.512
1840
+ - type: ndcg_at_100
1841
+ value: 38.356
1842
+ - type: ndcg_at_1000
1843
+ value: 49.57
1844
+ - type: ndcg_at_3
1845
+ value: 27.704
1846
+ - type: ndcg_at_5
1847
+ value: 27.342
1848
+ - type: precision_at_1
1849
+ value: 30.612000000000002
1850
+ - type: precision_at_10
1851
+ value: 24.285999999999998
1852
+ - type: precision_at_100
1853
+ value: 8.0
1854
+ - type: precision_at_1000
1855
+ value: 1.541
1856
+ - type: precision_at_3
1857
+ value: 29.252
1858
+ - type: precision_at_5
1859
+ value: 27.346999999999998
1860
+ - type: recall_at_1
1861
+ value: 2.701
1862
+ - type: recall_at_10
1863
+ value: 17.197000000000003
1864
+ - type: recall_at_100
1865
+ value: 49.061
1866
+ - type: recall_at_1000
1867
+ value: 82.82300000000001
1868
+ - type: recall_at_3
1869
+ value: 6.687
1870
+ - type: recall_at_5
1871
+ value: 9.868
1872
  ---
1873
  DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON:
1874
  Diverse Augmentation Towards Generalizable Dense Retrieval](https://arxiv.org/abs/2302.07452).