ccsasuke commited on
Commit
68074e7
·
1 Parent(s): 3ff012a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -1867
README.md CHANGED
@@ -1,1874 +1,7 @@
1
  ---
2
  tags:
3
  - feature-extraction
4
- - mteb
5
  pipeline_tag: feature-extraction
6
- model-index:
7
- - name: dragon-plus
8
- results:
9
- - task:
10
- type: Retrieval
11
- dataset:
12
- type: arguana
13
- name: MTEB ArguAna
14
- config: default
15
- split: test
16
- revision: None
17
- metrics:
18
- - type: map_at_1
19
- value: 22.973
20
- - type: map_at_10
21
- value: 38.242
22
- - type: map_at_100
23
- value: 39.326
24
- - type: map_at_1000
25
- value: 39.342
26
- - type: map_at_3
27
- value: 33.144
28
- - type: map_at_5
29
- value: 35.818
30
- - type: mrr_at_1
31
- value: 23.115
32
- - type: mrr_at_10
33
- value: 38.31
34
- - type: mrr_at_100
35
- value: 39.387
36
- - type: mrr_at_1000
37
- value: 39.403
38
- - type: mrr_at_3
39
- value: 33.167
40
- - type: mrr_at_5
41
- value: 35.856
42
- - type: ndcg_at_1
43
- value: 22.973
44
- - type: ndcg_at_10
45
- value: 47.251
46
- - type: ndcg_at_100
47
- value: 51.937
48
- - type: ndcg_at_1000
49
- value: 52.288000000000004
50
- - type: ndcg_at_3
51
- value: 36.569
52
- - type: ndcg_at_5
53
- value: 41.396
54
- - type: precision_at_1
55
- value: 22.973
56
- - type: precision_at_10
57
- value: 7.632
58
- - type: precision_at_100
59
- value: 0.9690000000000001
60
- - type: precision_at_1000
61
- value: 0.1
62
- - type: precision_at_3
63
- value: 15.504999999999999
64
- - type: precision_at_5
65
- value: 11.65
66
- - type: recall_at_1
67
- value: 22.973
68
- - type: recall_at_10
69
- value: 76.31599999999999
70
- - type: recall_at_100
71
- value: 96.942
72
- - type: recall_at_1000
73
- value: 99.57300000000001
74
- - type: recall_at_3
75
- value: 46.515
76
- - type: recall_at_5
77
- value: 58.25
78
- - task:
79
- type: Retrieval
80
- dataset:
81
- type: BeIR/cqadupstack
82
- name: MTEB CQADupstackAndroidRetrieval
83
- config: default
84
- split: test
85
- revision: None
86
- metrics:
87
- - type: map_at_1
88
- value: 28.793000000000003
89
- - type: map_at_10
90
- value: 38.686
91
- - type: map_at_100
92
- value: 39.848
93
- - type: map_at_1000
94
- value: 39.989999999999995
95
- - type: map_at_3
96
- value: 35.437000000000005
97
- - type: map_at_5
98
- value: 37.067
99
- - type: mrr_at_1
100
- value: 35.05
101
- - type: mrr_at_10
102
- value: 43.903999999999996
103
- - type: mrr_at_100
104
- value: 44.612
105
- - type: mrr_at_1000
106
- value: 44.669
107
- - type: mrr_at_3
108
- value: 41.321000000000005
109
- - type: mrr_at_5
110
- value: 42.573
111
- - type: ndcg_at_1
112
- value: 35.05
113
- - type: ndcg_at_10
114
- value: 44.564
115
- - type: ndcg_at_100
116
- value: 49.252
117
- - type: ndcg_at_1000
118
- value: 51.791
119
- - type: ndcg_at_3
120
- value: 39.576
121
- - type: ndcg_at_5
122
- value: 41.426
123
- - type: precision_at_1
124
- value: 35.05
125
- - type: precision_at_10
126
- value: 8.455
127
- - type: precision_at_100
128
- value: 1.3299999999999998
129
- - type: precision_at_1000
130
- value: 0.187
131
- - type: precision_at_3
132
- value: 18.645999999999997
133
- - type: precision_at_5
134
- value: 13.247
135
- - type: recall_at_1
136
- value: 28.793000000000003
137
- - type: recall_at_10
138
- value: 56.351
139
- - type: recall_at_100
140
- value: 76.542
141
- - type: recall_at_1000
142
- value: 93.14099999999999
143
- - type: recall_at_3
144
- value: 41.581
145
- - type: recall_at_5
146
- value: 47.066
147
- - task:
148
- type: Retrieval
149
- dataset:
150
- type: BeIR/cqadupstack
151
- name: MTEB CQADupstackEnglishRetrieval
152
- config: default
153
- split: test
154
- revision: None
155
- metrics:
156
- - type: map_at_1
157
- value: 29.828
158
- - type: map_at_10
159
- value: 39.312999999999995
160
- - type: map_at_100
161
- value: 40.487
162
- - type: map_at_1000
163
- value: 40.607
164
- - type: map_at_3
165
- value: 36.525
166
- - type: map_at_5
167
- value: 38.121
168
- - type: mrr_at_1
169
- value: 37.197
170
- - type: mrr_at_10
171
- value: 45.091
172
- - type: mrr_at_100
173
- value: 45.726
174
- - type: mrr_at_1000
175
- value: 45.769999999999996
176
- - type: mrr_at_3
177
- value: 42.856
178
- - type: mrr_at_5
179
- value: 44.056
180
- - type: ndcg_at_1
181
- value: 37.197
182
- - type: ndcg_at_10
183
- value: 44.737
184
- - type: ndcg_at_100
185
- value: 49.02
186
- - type: ndcg_at_1000
187
- value: 51.052
188
- - type: ndcg_at_3
189
- value: 40.685
190
- - type: ndcg_at_5
191
- value: 42.519
192
- - type: precision_at_1
193
- value: 37.197
194
- - type: precision_at_10
195
- value: 8.363
196
- - type: precision_at_100
197
- value: 1.329
198
- - type: precision_at_1000
199
- value: 0.179
200
- - type: precision_at_3
201
- value: 19.533
202
- - type: precision_at_5
203
- value: 13.732
204
- - type: recall_at_1
205
- value: 29.828
206
- - type: recall_at_10
207
- value: 54.339000000000006
208
- - type: recall_at_100
209
- value: 72.217
210
- - type: recall_at_1000
211
- value: 85.185
212
- - type: recall_at_3
213
- value: 42.331
214
- - type: recall_at_5
215
- value: 47.612
216
- - task:
217
- type: Retrieval
218
- dataset:
219
- type: BeIR/cqadupstack
220
- name: MTEB CQADupstackGamingRetrieval
221
- config: default
222
- split: test
223
- revision: None
224
- metrics:
225
- - type: map_at_1
226
- value: 37.919000000000004
227
- - type: map_at_10
228
- value: 49.225
229
- - type: map_at_100
230
- value: 50.306
231
- - type: map_at_1000
232
- value: 50.364
233
- - type: map_at_3
234
- value: 46.459
235
- - type: map_at_5
236
- value: 48.173
237
- - type: mrr_at_1
238
- value: 43.072
239
- - type: mrr_at_10
240
- value: 52.437
241
- - type: mrr_at_100
242
- value: 53.2
243
- - type: mrr_at_1000
244
- value: 53.233
245
- - type: mrr_at_3
246
- value: 50.219
247
- - type: mrr_at_5
248
- value: 51.629999999999995
249
- - type: ndcg_at_1
250
- value: 43.072
251
- - type: ndcg_at_10
252
- value: 54.468
253
- - type: ndcg_at_100
254
- value: 58.912
255
- - type: ndcg_at_1000
256
- value: 60.179
257
- - type: ndcg_at_3
258
- value: 49.836999999999996
259
- - type: ndcg_at_5
260
- value: 52.371
261
- - type: precision_at_1
262
- value: 43.072
263
- - type: precision_at_10
264
- value: 8.52
265
- - type: precision_at_100
266
- value: 1.168
267
- - type: precision_at_1000
268
- value: 0.133
269
- - type: precision_at_3
270
- value: 21.923000000000002
271
- - type: precision_at_5
272
- value: 14.997
273
- - type: recall_at_1
274
- value: 37.919000000000004
275
- - type: recall_at_10
276
- value: 66.682
277
- - type: recall_at_100
278
- value: 85.81
279
- - type: recall_at_1000
280
- value: 94.812
281
- - type: recall_at_3
282
- value: 54.515
283
- - type: recall_at_5
284
- value: 60.684000000000005
285
- - task:
286
- type: Retrieval
287
- dataset:
288
- type: BeIR/cqadupstack
289
- name: MTEB CQADupstackGisRetrieval
290
- config: default
291
- split: test
292
- revision: None
293
- metrics:
294
- - type: map_at_1
295
- value: 21.04
296
- - type: map_at_10
297
- value: 27.665
298
- - type: map_at_100
299
- value: 28.716
300
- - type: map_at_1000
301
- value: 28.794999999999998
302
- - type: map_at_3
303
- value: 25.338
304
- - type: map_at_5
305
- value: 26.815
306
- - type: mrr_at_1
307
- value: 22.712
308
- - type: mrr_at_10
309
- value: 29.447000000000003
310
- - type: mrr_at_100
311
- value: 30.457
312
- - type: mrr_at_1000
313
- value: 30.522
314
- - type: mrr_at_3
315
- value: 27.119
316
- - type: mrr_at_5
317
- value: 28.582
318
- - type: ndcg_at_1
319
- value: 22.712
320
- - type: ndcg_at_10
321
- value: 31.77
322
- - type: ndcg_at_100
323
- value: 37.104
324
- - type: ndcg_at_1000
325
- value: 39.371
326
- - type: ndcg_at_3
327
- value: 27.171
328
- - type: ndcg_at_5
329
- value: 29.698999999999998
330
- - type: precision_at_1
331
- value: 22.712
332
- - type: precision_at_10
333
- value: 4.859
334
- - type: precision_at_100
335
- value: 0.7929999999999999
336
- - type: precision_at_1000
337
- value: 0.10300000000000001
338
- - type: precision_at_3
339
- value: 11.299
340
- - type: precision_at_5
341
- value: 8.203000000000001
342
- - type: recall_at_1
343
- value: 21.04
344
- - type: recall_at_10
345
- value: 42.848000000000006
346
- - type: recall_at_100
347
- value: 67.694
348
- - type: recall_at_1000
349
- value: 85.179
350
- - type: recall_at_3
351
- value: 30.54
352
- - type: recall_at_5
353
- value: 36.555
354
- - task:
355
- type: Retrieval
356
- dataset:
357
- type: BeIR/cqadupstack
358
- name: MTEB CQADupstackMathematicaRetrieval
359
- config: default
360
- split: test
361
- revision: None
362
- metrics:
363
- - type: map_at_1
364
- value: 13.403
365
- - type: map_at_10
366
- value: 19.663
367
- - type: map_at_100
368
- value: 20.799
369
- - type: map_at_1000
370
- value: 20.915
371
- - type: map_at_3
372
- value: 17.465
373
- - type: map_at_5
374
- value: 18.665000000000003
375
- - type: mrr_at_1
376
- value: 16.418
377
- - type: mrr_at_10
378
- value: 23.394000000000002
379
- - type: mrr_at_100
380
- value: 24.363
381
- - type: mrr_at_1000
382
- value: 24.44
383
- - type: mrr_at_3
384
- value: 20.916
385
- - type: mrr_at_5
386
- value: 22.241
387
- - type: ndcg_at_1
388
- value: 16.418
389
- - type: ndcg_at_10
390
- value: 24.013
391
- - type: ndcg_at_100
392
- value: 29.62
393
- - type: ndcg_at_1000
394
- value: 32.518
395
- - type: ndcg_at_3
396
- value: 19.747
397
- - type: ndcg_at_5
398
- value: 21.689
399
- - type: precision_at_1
400
- value: 16.418
401
- - type: precision_at_10
402
- value: 4.515000000000001
403
- - type: precision_at_100
404
- value: 0.8410000000000001
405
- - type: precision_at_1000
406
- value: 0.123
407
- - type: precision_at_3
408
- value: 9.411
409
- - type: precision_at_5
410
- value: 6.965000000000001
411
- - type: recall_at_1
412
- value: 13.403
413
- - type: recall_at_10
414
- value: 33.731
415
- - type: recall_at_100
416
- value: 58.743
417
- - type: recall_at_1000
418
- value: 79.343
419
- - type: recall_at_3
420
- value: 22.148
421
- - type: recall_at_5
422
- value: 26.998
423
- - task:
424
- type: Retrieval
425
- dataset:
426
- type: BeIR/cqadupstack
427
- name: MTEB CQADupstackPhysicsRetrieval
428
- config: default
429
- split: test
430
- revision: None
431
- metrics:
432
- - type: map_at_1
433
- value: 25.782
434
- - type: map_at_10
435
- value: 34.891
436
- - type: map_at_100
437
- value: 36.186
438
- - type: map_at_1000
439
- value: 36.303999999999995
440
- - type: map_at_3
441
- value: 32.099
442
- - type: map_at_5
443
- value: 33.777
444
- - type: mrr_at_1
445
- value: 30.895
446
- - type: mrr_at_10
447
- value: 40.049
448
- - type: mrr_at_100
449
- value: 40.953
450
- - type: mrr_at_1000
451
- value: 41.0
452
- - type: mrr_at_3
453
- value: 37.424
454
- - type: mrr_at_5
455
- value: 39.07
456
- - type: ndcg_at_1
457
- value: 30.895
458
- - type: ndcg_at_10
459
- value: 40.436
460
- - type: ndcg_at_100
461
- value: 46.046
462
- - type: ndcg_at_1000
463
- value: 48.324
464
- - type: ndcg_at_3
465
- value: 35.66
466
- - type: ndcg_at_5
467
- value: 38.167
468
- - type: precision_at_1
469
- value: 30.895
470
- - type: precision_at_10
471
- value: 7.151000000000001
472
- - type: precision_at_100
473
- value: 1.171
474
- - type: precision_at_1000
475
- value: 0.155
476
- - type: precision_at_3
477
- value: 16.619
478
- - type: precision_at_5
479
- value: 11.935
480
- - type: recall_at_1
481
- value: 25.782
482
- - type: recall_at_10
483
- value: 52.013
484
- - type: recall_at_100
485
- value: 75.736
486
- - type: recall_at_1000
487
- value: 90.823
488
- - type: recall_at_3
489
- value: 38.763
490
- - type: recall_at_5
491
- value: 45.023
492
- - task:
493
- type: Retrieval
494
- dataset:
495
- type: BeIR/cqadupstack
496
- name: MTEB CQADupstackProgrammersRetrieval
497
- config: default
498
- split: test
499
- revision: None
500
- metrics:
501
- - type: map_at_1
502
- value: 22.491
503
- - type: map_at_10
504
- value: 30.434
505
- - type: map_at_100
506
- value: 31.611
507
- - type: map_at_1000
508
- value: 31.732
509
- - type: map_at_3
510
- value: 27.776
511
- - type: map_at_5
512
- value: 29.271
513
- - type: mrr_at_1
514
- value: 27.74
515
- - type: mrr_at_10
516
- value: 34.964
517
- - type: mrr_at_100
518
- value: 35.943000000000005
519
- - type: mrr_at_1000
520
- value: 36.012
521
- - type: mrr_at_3
522
- value: 32.667
523
- - type: mrr_at_5
524
- value: 33.975
525
- - type: ndcg_at_1
526
- value: 27.74
527
- - type: ndcg_at_10
528
- value: 35.32
529
- - type: ndcg_at_100
530
- value: 40.812
531
- - type: ndcg_at_1000
532
- value: 43.49
533
- - type: ndcg_at_3
534
- value: 30.843999999999998
535
- - type: ndcg_at_5
536
- value: 32.838
537
- - type: precision_at_1
538
- value: 27.74
539
- - type: precision_at_10
540
- value: 6.358
541
- - type: precision_at_100
542
- value: 1.078
543
- - type: precision_at_1000
544
- value: 0.147
545
- - type: precision_at_3
546
- value: 14.421999999999999
547
- - type: precision_at_5
548
- value: 10.32
549
- - type: recall_at_1
550
- value: 22.491
551
- - type: recall_at_10
552
- value: 45.659
553
- - type: recall_at_100
554
- value: 69.303
555
- - type: recall_at_1000
556
- value: 87.849
557
- - type: recall_at_3
558
- value: 33.155
559
- - type: recall_at_5
560
- value: 38.369
561
- - task:
562
- type: Retrieval
563
- dataset:
564
- type: BeIR/cqadupstack
565
- name: MTEB CQADupstackRetrieval
566
- config: default
567
- split: test
568
- revision: None
569
- metrics:
570
- - type: map_at_1
571
- value: 22.955500000000008
572
- - type: map_at_10
573
- value: 30.754000000000005
574
- - type: map_at_100
575
- value: 31.85208333333333
576
- - type: map_at_1000
577
- value: 31.968416666666666
578
- - type: map_at_3
579
- value: 28.35166666666667
580
- - type: map_at_5
581
- value: 29.717333333333336
582
- - type: mrr_at_1
583
- value: 27.0815
584
- - type: mrr_at_10
585
- value: 34.50116666666666
586
- - type: mrr_at_100
587
- value: 35.361583333333336
588
- - type: mrr_at_1000
589
- value: 35.42583333333334
590
- - type: mrr_at_3
591
- value: 32.30499999999999
592
- - type: mrr_at_5
593
- value: 33.56175
594
- - type: ndcg_at_1
595
- value: 27.0815
596
- - type: ndcg_at_10
597
- value: 35.40033333333333
598
- - type: ndcg_at_100
599
- value: 40.3485
600
- - type: ndcg_at_1000
601
- value: 42.86816666666667
602
- - type: ndcg_at_3
603
- value: 31.24325
604
- - type: ndcg_at_5
605
- value: 33.21525
606
- - type: precision_at_1
607
- value: 27.0815
608
- - type: precision_at_10
609
- value: 6.118666666666667
610
- - type: precision_at_100
611
- value: 1.0085833333333334
612
- - type: precision_at_1000
613
- value: 0.14150000000000001
614
- - type: precision_at_3
615
- value: 14.19175
616
- - type: precision_at_5
617
- value: 10.064583333333331
618
- - type: recall_at_1
619
- value: 22.955500000000008
620
- - type: recall_at_10
621
- value: 45.51058333333333
622
- - type: recall_at_100
623
- value: 67.49925
624
- - type: recall_at_1000
625
- value: 85.24766666666666
626
- - type: recall_at_3
627
- value: 33.885
628
- - type: recall_at_5
629
- value: 38.99608333333334
630
- - task:
631
- type: Retrieval
632
- dataset:
633
- type: BeIR/cqadupstack
634
- name: MTEB CQADupstackStatsRetrieval
635
- config: default
636
- split: test
637
- revision: None
638
- metrics:
639
- - type: map_at_1
640
- value: 21.371000000000002
641
- - type: map_at_10
642
- value: 27.532
643
- - type: map_at_100
644
- value: 28.443
645
- - type: map_at_1000
646
- value: 28.525
647
- - type: map_at_3
648
- value: 25.689
649
- - type: map_at_5
650
- value: 26.677
651
- - type: mrr_at_1
652
- value: 24.08
653
- - type: mrr_at_10
654
- value: 30.128
655
- - type: mrr_at_100
656
- value: 30.953999999999997
657
- - type: mrr_at_1000
658
- value: 31.022
659
- - type: mrr_at_3
660
- value: 28.298000000000002
661
- - type: mrr_at_5
662
- value: 29.317
663
- - type: ndcg_at_1
664
- value: 24.08
665
- - type: ndcg_at_10
666
- value: 31.212
667
- - type: ndcg_at_100
668
- value: 35.72
669
- - type: ndcg_at_1000
670
- value: 38.061
671
- - type: ndcg_at_3
672
- value: 27.705000000000002
673
- - type: ndcg_at_5
674
- value: 29.26
675
- - type: precision_at_1
676
- value: 24.08
677
- - type: precision_at_10
678
- value: 4.8469999999999995
679
- - type: precision_at_100
680
- value: 0.753
681
- - type: precision_at_1000
682
- value: 0.104
683
- - type: precision_at_3
684
- value: 11.759
685
- - type: precision_at_5
686
- value: 8.097999999999999
687
- - type: recall_at_1
688
- value: 21.371000000000002
689
- - type: recall_at_10
690
- value: 40.089000000000006
691
- - type: recall_at_100
692
- value: 60.879000000000005
693
- - type: recall_at_1000
694
- value: 78.325
695
- - type: recall_at_3
696
- value: 30.175
697
- - type: recall_at_5
698
- value: 34.168
699
- - task:
700
- type: Retrieval
701
- dataset:
702
- type: BeIR/cqadupstack
703
- name: MTEB CQADupstackTexRetrieval
704
- config: default
705
- split: test
706
- revision: None
707
- metrics:
708
- - type: map_at_1
709
- value: 15.043999999999999
710
- - type: map_at_10
711
- value: 20.794
712
- - type: map_at_100
713
- value: 21.636
714
- - type: map_at_1000
715
- value: 21.753
716
- - type: map_at_3
717
- value: 19.006
718
- - type: map_at_5
719
- value: 19.994999999999997
720
- - type: mrr_at_1
721
- value: 18.066
722
- - type: mrr_at_10
723
- value: 24.157999999999998
724
- - type: mrr_at_100
725
- value: 24.936
726
- - type: mrr_at_1000
727
- value: 25.018
728
- - type: mrr_at_3
729
- value: 22.345000000000002
730
- - type: mrr_at_5
731
- value: 23.396
732
- - type: ndcg_at_1
733
- value: 18.066
734
- - type: ndcg_at_10
735
- value: 24.584
736
- - type: ndcg_at_100
737
- value: 28.869
738
- - type: ndcg_at_1000
739
- value: 31.94
740
- - type: ndcg_at_3
741
- value: 21.295
742
- - type: ndcg_at_5
743
- value: 22.820999999999998
744
- - type: precision_at_1
745
- value: 18.066
746
- - type: precision_at_10
747
- value: 4.381
748
- - type: precision_at_100
749
- value: 0.754
750
- - type: precision_at_1000
751
- value: 0.117
752
- - type: precision_at_3
753
- value: 9.956
754
- - type: precision_at_5
755
- value: 7.123
756
- - type: recall_at_1
757
- value: 15.043999999999999
758
- - type: recall_at_10
759
- value: 32.665
760
- - type: recall_at_100
761
- value: 52.342
762
- - type: recall_at_1000
763
- value: 74.896
764
- - type: recall_at_3
765
- value: 23.402
766
- - type: recall_at_5
767
- value: 27.397
768
- - task:
769
- type: Retrieval
770
- dataset:
771
- type: BeIR/cqadupstack
772
- name: MTEB CQADupstackUnixRetrieval
773
- config: default
774
- split: test
775
- revision: None
776
- metrics:
777
- - type: map_at_1
778
- value: 22.712
779
- - type: map_at_10
780
- value: 28.963
781
- - type: map_at_100
782
- value: 29.934
783
- - type: map_at_1000
784
- value: 30.049
785
- - type: map_at_3
786
- value: 27.086
787
- - type: map_at_5
788
- value: 28.163
789
- - type: mrr_at_1
790
- value: 26.586
791
- - type: mrr_at_10
792
- value: 32.792
793
- - type: mrr_at_100
794
- value: 33.692
795
- - type: mrr_at_1000
796
- value: 33.767
797
- - type: mrr_at_3
798
- value: 30.939
799
- - type: mrr_at_5
800
- value: 32.012
801
- - type: ndcg_at_1
802
- value: 26.586
803
- - type: ndcg_at_10
804
- value: 32.92
805
- - type: ndcg_at_100
806
- value: 37.891000000000005
807
- - type: ndcg_at_1000
808
- value: 40.647
809
- - type: ndcg_at_3
810
- value: 29.465000000000003
811
- - type: ndcg_at_5
812
- value: 31.106
813
- - type: precision_at_1
814
- value: 26.586
815
- - type: precision_at_10
816
- value: 5.177
817
- - type: precision_at_100
818
- value: 0.8540000000000001
819
- - type: precision_at_1000
820
- value: 0.121
821
- - type: precision_at_3
822
- value: 12.903999999999998
823
- - type: precision_at_5
824
- value: 8.881
825
- - type: recall_at_1
826
- value: 22.712
827
- - type: recall_at_10
828
- value: 41.382000000000005
829
- - type: recall_at_100
830
- value: 63.866
831
- - type: recall_at_1000
832
- value: 83.29299999999999
833
- - type: recall_at_3
834
- value: 31.739
835
- - type: recall_at_5
836
- value: 35.988
837
- - task:
838
- type: Retrieval
839
- dataset:
840
- type: BeIR/cqadupstack
841
- name: MTEB CQADupstackWebmastersRetrieval
842
- config: default
843
- split: test
844
- revision: None
845
- metrics:
846
- - type: map_at_1
847
- value: 19.64
848
- - type: map_at_10
849
- value: 28.432000000000002
850
- - type: map_at_100
851
- value: 29.848999999999997
852
- - type: map_at_1000
853
- value: 30.072
854
- - type: map_at_3
855
- value: 25.862000000000002
856
- - type: map_at_5
857
- value: 27.339000000000002
858
- - type: mrr_at_1
859
- value: 24.308
860
- - type: mrr_at_10
861
- value: 32.475
862
- - type: mrr_at_100
863
- value: 33.404
864
- - type: mrr_at_1000
865
- value: 33.477000000000004
866
- - type: mrr_at_3
867
- value: 30.203999999999997
868
- - type: mrr_at_5
869
- value: 31.558000000000003
870
- - type: ndcg_at_1
871
- value: 24.308
872
- - type: ndcg_at_10
873
- value: 33.79
874
- - type: ndcg_at_100
875
- value: 39.113
876
- - type: ndcg_at_1000
877
- value: 42.388
878
- - type: ndcg_at_3
879
- value: 29.738999999999997
880
- - type: ndcg_at_5
881
- value: 31.734
882
- - type: precision_at_1
883
- value: 24.308
884
- - type: precision_at_10
885
- value: 6.621
886
- - type: precision_at_100
887
- value: 1.322
888
- - type: precision_at_1000
889
- value: 0.22499999999999998
890
- - type: precision_at_3
891
- value: 14.032
892
- - type: precision_at_5
893
- value: 10.435
894
- - type: recall_at_1
895
- value: 19.64
896
- - type: recall_at_10
897
- value: 44.147999999999996
898
- - type: recall_at_100
899
- value: 68.31099999999999
900
- - type: recall_at_1000
901
- value: 90.022
902
- - type: recall_at_3
903
- value: 32.275999999999996
904
- - type: recall_at_5
905
- value: 37.717
906
- - task:
907
- type: Retrieval
908
- dataset:
909
- type: BeIR/cqadupstack
910
- name: MTEB CQADupstackWordpressRetrieval
911
- config: default
912
- split: test
913
- revision: None
914
- metrics:
915
- - type: map_at_1
916
- value: 17.443
917
- - type: map_at_10
918
- value: 23.45
919
- - type: map_at_100
920
- value: 24.41
921
- - type: map_at_1000
922
- value: 24.515
923
- - type: map_at_3
924
- value: 21.478
925
- - type: map_at_5
926
- value: 22.545
927
- - type: mrr_at_1
928
- value: 18.854000000000003
929
- - type: mrr_at_10
930
- value: 25.174999999999997
931
- - type: mrr_at_100
932
- value: 26.099
933
- - type: mrr_at_1000
934
- value: 26.179999999999996
935
- - type: mrr_at_3
936
- value: 23.352
937
- - type: mrr_at_5
938
- value: 24.331
939
- - type: ndcg_at_1
940
- value: 18.854000000000003
941
- - type: ndcg_at_10
942
- value: 26.99
943
- - type: ndcg_at_100
944
- value: 31.823
945
- - type: ndcg_at_1000
946
- value: 34.657
947
- - type: ndcg_at_3
948
- value: 23.195
949
- - type: ndcg_at_5
950
- value: 24.953
951
- - type: precision_at_1
952
- value: 18.854000000000003
953
- - type: precision_at_10
954
- value: 4.1770000000000005
955
- - type: precision_at_100
956
- value: 0.7100000000000001
957
- - type: precision_at_1000
958
- value: 0.104
959
- - type: precision_at_3
960
- value: 9.797
961
- - type: precision_at_5
962
- value: 6.839
963
- - type: recall_at_1
964
- value: 17.443
965
- - type: recall_at_10
966
- value: 36.22
967
- - type: recall_at_100
968
- value: 58.548
969
- - type: recall_at_1000
970
- value: 80.104
971
- - type: recall_at_3
972
- value: 25.995
973
- - type: recall_at_5
974
- value: 30.375999999999998
975
- - task:
976
- type: Retrieval
977
- dataset:
978
- type: climate-fever
979
- name: MTEB ClimateFEVER
980
- config: default
981
- split: test
982
- revision: None
983
- metrics:
984
- - type: map_at_1
985
- value: 10.283000000000001
986
- - type: map_at_10
987
- value: 16.121
988
- - type: map_at_100
989
- value: 17.818
990
- - type: map_at_1000
991
- value: 18.015
992
- - type: map_at_3
993
- value: 13.655000000000001
994
- - type: map_at_5
995
- value: 14.854999999999999
996
- - type: mrr_at_1
997
- value: 22.15
998
- - type: mrr_at_10
999
- value: 31.139
1000
- - type: mrr_at_100
1001
- value: 32.336999999999996
1002
- - type: mrr_at_1000
1003
- value: 32.39
1004
- - type: mrr_at_3
1005
- value: 27.861000000000004
1006
- - type: mrr_at_5
1007
- value: 29.754
1008
- - type: ndcg_at_1
1009
- value: 22.15
1010
- - type: ndcg_at_10
1011
- value: 22.852
1012
- - type: ndcg_at_100
1013
- value: 30.233999999999998
1014
- - type: ndcg_at_1000
1015
- value: 34.02
1016
- - type: ndcg_at_3
1017
- value: 18.394
1018
- - type: ndcg_at_5
1019
- value: 19.973
1020
- - type: precision_at_1
1021
- value: 22.15
1022
- - type: precision_at_10
1023
- value: 6.912
1024
- - type: precision_at_100
1025
- value: 1.4829999999999999
1026
- - type: precision_at_1000
1027
- value: 0.218
1028
- - type: precision_at_3
1029
- value: 12.899
1030
- - type: precision_at_5
1031
- value: 10.111
1032
- - type: recall_at_1
1033
- value: 10.283000000000001
1034
- - type: recall_at_10
1035
- value: 27.587
1036
- - type: recall_at_100
1037
- value: 53.273
1038
- - type: recall_at_1000
1039
- value: 74.74499999999999
1040
- - type: recall_at_3
1041
- value: 16.897000000000002
1042
- - type: recall_at_5
1043
- value: 21.084
1044
- - task:
1045
- type: Retrieval
1046
- dataset:
1047
- type: dbpedia-entity
1048
- name: MTEB DBPedia
1049
- config: default
1050
- split: test
1051
- revision: None
1052
- metrics:
1053
- - type: map_at_1
1054
- value: 9.038
1055
- - type: map_at_10
1056
- value: 20.153
1057
- - type: map_at_100
1058
- value: 28.610999999999997
1059
- - type: map_at_1000
1060
- value: 30.285
1061
- - type: map_at_3
1062
- value: 14.249
1063
- - type: map_at_5
1064
- value: 16.715
1065
- - type: mrr_at_1
1066
- value: 66.75
1067
- - type: mrr_at_10
1068
- value: 74.477
1069
- - type: mrr_at_100
1070
- value: 74.678
1071
- - type: mrr_at_1000
1072
- value: 74.695
1073
- - type: mrr_at_3
1074
- value: 72.625
1075
- - type: mrr_at_5
1076
- value: 73.8
1077
- - type: ndcg_at_1
1078
- value: 55.125
1079
- - type: ndcg_at_10
1080
- value: 41.837999999999994
1081
- - type: ndcg_at_100
1082
- value: 46.182
1083
- - type: ndcg_at_1000
1084
- value: 53.144000000000005
1085
- - type: ndcg_at_3
1086
- value: 46.084
1087
- - type: ndcg_at_5
1088
- value: 43.751
1089
- - type: precision_at_1
1090
- value: 66.75
1091
- - type: precision_at_10
1092
- value: 33.775
1093
- - type: precision_at_100
1094
- value: 10.803
1095
- - type: precision_at_1000
1096
- value: 2.191
1097
- - type: precision_at_3
1098
- value: 49.5
1099
- - type: precision_at_5
1100
- value: 42.4
1101
- - type: recall_at_1
1102
- value: 9.038
1103
- - type: recall_at_10
1104
- value: 25.988
1105
- - type: recall_at_100
1106
- value: 52.158
1107
- - type: recall_at_1000
1108
- value: 74.617
1109
- - type: recall_at_3
1110
- value: 15.675
1111
- - type: recall_at_5
1112
- value: 19.570999999999998
1113
- - task:
1114
- type: Retrieval
1115
- dataset:
1116
- type: fever
1117
- name: MTEB FEVER
1118
- config: default
1119
- split: test
1120
- revision: None
1121
- metrics:
1122
- - type: map_at_1
1123
- value: 62.551
1124
- - type: map_at_10
1125
- value: 73.124
1126
- - type: map_at_100
1127
- value: 73.432
1128
- - type: map_at_1000
1129
- value: 73.447
1130
- - type: map_at_3
1131
- value: 71.297
1132
- - type: map_at_5
1133
- value: 72.489
1134
- - type: mrr_at_1
1135
- value: 67.23700000000001
1136
- - type: mrr_at_10
1137
- value: 77.438
1138
- - type: mrr_at_100
1139
- value: 77.645
1140
- - type: mrr_at_1000
1141
- value: 77.64999999999999
1142
- - type: mrr_at_3
1143
- value: 75.788
1144
- - type: mrr_at_5
1145
- value: 76.886
1146
- - type: ndcg_at_1
1147
- value: 67.23700000000001
1148
- - type: ndcg_at_10
1149
- value: 78.306
1150
- - type: ndcg_at_100
1151
- value: 79.526
1152
- - type: ndcg_at_1000
1153
- value: 79.825
1154
- - type: ndcg_at_3
1155
- value: 74.961
1156
- - type: ndcg_at_5
1157
- value: 76.91900000000001
1158
- - type: precision_at_1
1159
- value: 67.23700000000001
1160
- - type: precision_at_10
1161
- value: 9.875
1162
- - type: precision_at_100
1163
- value: 1.065
1164
- - type: precision_at_1000
1165
- value: 0.11
1166
- - type: precision_at_3
1167
- value: 29.353
1168
- - type: precision_at_5
1169
- value: 18.749
1170
- - type: recall_at_1
1171
- value: 62.551
1172
- - type: recall_at_10
1173
- value: 90.011
1174
- - type: recall_at_100
1175
- value: 95.06
1176
- - type: recall_at_1000
1177
- value: 97.033
1178
- - type: recall_at_3
1179
- value: 81.081
1180
- - type: recall_at_5
1181
- value: 85.87599999999999
1182
- - task:
1183
- type: Retrieval
1184
- dataset:
1185
- type: fiqa
1186
- name: MTEB FiQA2018
1187
- config: default
1188
- split: test
1189
- revision: None
1190
- metrics:
1191
- - type: map_at_1
1192
- value: 17.636
1193
- - type: map_at_10
1194
- value: 28.627000000000002
1195
- - type: map_at_100
1196
- value: 30.262
1197
- - type: map_at_1000
1198
- value: 30.442000000000004
1199
- - type: map_at_3
1200
- value: 25.091
1201
- - type: map_at_5
1202
- value: 27.12
1203
- - type: mrr_at_1
1204
- value: 34.259
1205
- - type: mrr_at_10
1206
- value: 42.733
1207
- - type: mrr_at_100
1208
- value: 43.613
1209
- - type: mrr_at_1000
1210
- value: 43.663000000000004
1211
- - type: mrr_at_3
1212
- value: 40.406
1213
- - type: mrr_at_5
1214
- value: 41.687000000000005
1215
- - type: ndcg_at_1
1216
- value: 34.259
1217
- - type: ndcg_at_10
1218
- value: 35.613
1219
- - type: ndcg_at_100
1220
- value: 42.027
1221
- - type: ndcg_at_1000
1222
- value: 45.336999999999996
1223
- - type: ndcg_at_3
1224
- value: 32.435
1225
- - type: ndcg_at_5
1226
- value: 33.482
1227
- - type: precision_at_1
1228
- value: 34.259
1229
- - type: precision_at_10
1230
- value: 9.66
1231
- - type: precision_at_100
1232
- value: 1.6219999999999999
1233
- - type: precision_at_1000
1234
- value: 0.22300000000000003
1235
- - type: precision_at_3
1236
- value: 21.399
1237
- - type: precision_at_5
1238
- value: 15.741
1239
- - type: recall_at_1
1240
- value: 17.636
1241
- - type: recall_at_10
1242
- value: 41.955999999999996
1243
- - type: recall_at_100
1244
- value: 66.17
1245
- - type: recall_at_1000
1246
- value: 85.79599999999999
1247
- - type: recall_at_3
1248
- value: 29.853
1249
- - type: recall_at_5
1250
- value: 35.18
1251
- - task:
1252
- type: Retrieval
1253
- dataset:
1254
- type: hotpotqa
1255
- name: MTEB HotpotQA
1256
- config: default
1257
- split: test
1258
- revision: None
1259
- metrics:
1260
- - type: map_at_1
1261
- value: 39.487
1262
- - type: map_at_10
1263
- value: 56.765
1264
- - type: map_at_100
1265
- value: 57.616
1266
- - type: map_at_1000
1267
- value: 57.679
1268
- - type: map_at_3
1269
- value: 53.616
1270
- - type: map_at_5
1271
- value: 55.623999999999995
1272
- - type: mrr_at_1
1273
- value: 78.974
1274
- - type: mrr_at_10
1275
- value: 84.622
1276
- - type: mrr_at_100
1277
- value: 84.776
1278
- - type: mrr_at_1000
1279
- value: 84.783
1280
- - type: mrr_at_3
1281
- value: 83.747
1282
- - type: mrr_at_5
1283
- value: 84.27900000000001
1284
- - type: ndcg_at_1
1285
- value: 78.974
1286
- - type: ndcg_at_10
1287
- value: 66.164
1288
- - type: ndcg_at_100
1289
- value: 69.03099999999999
1290
- - type: ndcg_at_1000
1291
- value: 70.261
1292
- - type: ndcg_at_3
1293
- value: 61.712
1294
- - type: ndcg_at_5
1295
- value: 64.22
1296
- - type: precision_at_1
1297
- value: 78.974
1298
- - type: precision_at_10
1299
- value: 13.520999999999999
1300
- - type: precision_at_100
1301
- value: 1.575
1302
- - type: precision_at_1000
1303
- value: 0.174
1304
- - type: precision_at_3
1305
- value: 38.501000000000005
1306
- - type: precision_at_5
1307
- value: 25.083
1308
- - type: recall_at_1
1309
- value: 39.487
1310
- - type: recall_at_10
1311
- value: 67.60300000000001
1312
- - type: recall_at_100
1313
- value: 78.744
1314
- - type: recall_at_1000
1315
- value: 86.914
1316
- - type: recall_at_3
1317
- value: 57.752
1318
- - type: recall_at_5
1319
- value: 62.708
1320
- - task:
1321
- type: Retrieval
1322
- dataset:
1323
- type: msmarco
1324
- name: MTEB MSMARCO
1325
- config: default
1326
- split: dev
1327
- revision: None
1328
- metrics:
1329
- - type: map_at_1
1330
- value: 24.224999999999998
1331
- - type: map_at_10
1332
- value: 37.791000000000004
1333
- - type: map_at_100
1334
- value: 38.899
1335
- - type: map_at_1000
1336
- value: 38.937
1337
- - type: map_at_3
1338
- value: 33.584
1339
- - type: map_at_5
1340
- value: 36.142
1341
- - type: mrr_at_1
1342
- value: 24.871
1343
- - type: mrr_at_10
1344
- value: 38.361000000000004
1345
- - type: mrr_at_100
1346
- value: 39.394
1347
- - type: mrr_at_1000
1348
- value: 39.427
1349
- - type: mrr_at_3
1350
- value: 34.224
1351
- - type: mrr_at_5
1352
- value: 36.767
1353
- - type: ndcg_at_1
1354
- value: 24.871
1355
- - type: ndcg_at_10
1356
- value: 45.231
1357
- - type: ndcg_at_100
1358
- value: 50.42100000000001
1359
- - type: ndcg_at_1000
1360
- value: 51.329
1361
- - type: ndcg_at_3
1362
- value: 36.77
1363
- - type: ndcg_at_5
1364
- value: 41.33
1365
- - type: precision_at_1
1366
- value: 24.871
1367
- - type: precision_at_10
1368
- value: 7.124999999999999
1369
- - type: precision_at_100
1370
- value: 0.971
1371
- - type: precision_at_1000
1372
- value: 0.105
1373
- - type: precision_at_3
1374
- value: 15.659
1375
- - type: precision_at_5
1376
- value: 11.708
1377
- - type: recall_at_1
1378
- value: 24.224999999999998
1379
- - type: recall_at_10
1380
- value: 68.081
1381
- - type: recall_at_100
1382
- value: 91.818
1383
- - type: recall_at_1000
1384
- value: 98.65
1385
- - type: recall_at_3
1386
- value: 45.355000000000004
1387
- - type: recall_at_5
1388
- value: 56.26
1389
- - task:
1390
- type: Retrieval
1391
- dataset:
1392
- type: nfcorpus
1393
- name: MTEB NFCorpus
1394
- config: default
1395
- split: test
1396
- revision: None
1397
- metrics:
1398
- - type: map_at_1
1399
- value: 5.904
1400
- - type: map_at_10
1401
- value: 12.784
1402
- - type: map_at_100
1403
- value: 15.628
1404
- - type: map_at_1000
1405
- value: 17.006
1406
- - type: map_at_3
1407
- value: 9.695
1408
- - type: map_at_5
1409
- value: 10.961
1410
- - type: mrr_at_1
1411
- value: 46.44
1412
- - type: mrr_at_10
1413
- value: 54.106
1414
- - type: mrr_at_100
1415
- value: 54.81700000000001
1416
- - type: mrr_at_1000
1417
- value: 54.858
1418
- - type: mrr_at_3
1419
- value: 52.837999999999994
1420
- - type: mrr_at_5
1421
- value: 53.627
1422
- - type: ndcg_at_1
1423
- value: 44.737
1424
- - type: ndcg_at_10
1425
- value: 33.967999999999996
1426
- - type: ndcg_at_100
1427
- value: 30.451
1428
- - type: ndcg_at_1000
1429
- value: 39.151
1430
- - type: ndcg_at_3
1431
- value: 39.871
1432
- - type: ndcg_at_5
1433
- value: 37.138
1434
- - type: precision_at_1
1435
- value: 46.44
1436
- - type: precision_at_10
1437
- value: 24.582
1438
- - type: precision_at_100
1439
- value: 7.715
1440
- - type: precision_at_1000
1441
- value: 2.0500000000000003
1442
- - type: precision_at_3
1443
- value: 37.461
1444
- - type: precision_at_5
1445
- value: 31.517
1446
- - type: recall_at_1
1447
- value: 5.904
1448
- - type: recall_at_10
1449
- value: 16.522000000000002
1450
- - type: recall_at_100
1451
- value: 29.413
1452
- - type: recall_at_1000
1453
- value: 61.611000000000004
1454
- - type: recall_at_3
1455
- value: 10.649000000000001
1456
- - type: recall_at_5
1457
- value: 12.642999999999999
1458
- - task:
1459
- type: Retrieval
1460
- dataset:
1461
- type: nq
1462
- name: MTEB NQ
1463
- config: default
1464
- split: test
1465
- revision: None
1466
- metrics:
1467
- - type: map_at_1
1468
- value: 31.561
1469
- - type: map_at_10
1470
- value: 46.406
1471
- - type: map_at_100
1472
- value: 47.499
1473
- - type: map_at_1000
1474
- value: 47.526
1475
- - type: map_at_3
1476
- value: 42.26
1477
- - type: map_at_5
1478
- value: 44.724000000000004
1479
- - type: mrr_at_1
1480
- value: 35.168
1481
- - type: mrr_at_10
1482
- value: 48.914
1483
- - type: mrr_at_100
1484
- value: 49.727
1485
- - type: mrr_at_1000
1486
- value: 49.744
1487
- - type: mrr_at_3
1488
- value: 45.418
1489
- - type: mrr_at_5
1490
- value: 47.53
1491
- - type: ndcg_at_1
1492
- value: 35.138999999999996
1493
- - type: ndcg_at_10
1494
- value: 53.943
1495
- - type: ndcg_at_100
1496
- value: 58.50300000000001
1497
- - type: ndcg_at_1000
1498
- value: 59.144
1499
- - type: ndcg_at_3
1500
- value: 46.135999999999996
1501
- - type: ndcg_at_5
1502
- value: 50.227999999999994
1503
- - type: precision_at_1
1504
- value: 35.138999999999996
1505
- - type: precision_at_10
1506
- value: 8.812000000000001
1507
- - type: precision_at_100
1508
- value: 1.138
1509
- - type: precision_at_1000
1510
- value: 0.12
1511
- - type: precision_at_3
1512
- value: 20.867
1513
- - type: precision_at_5
1514
- value: 14.878
1515
- - type: recall_at_1
1516
- value: 31.561
1517
- - type: recall_at_10
1518
- value: 74.343
1519
- - type: recall_at_100
1520
- value: 93.975
1521
- - type: recall_at_1000
1522
- value: 98.75699999999999
1523
- - type: recall_at_3
1524
- value: 54.169
1525
- - type: recall_at_5
1526
- value: 63.56
1527
- - task:
1528
- type: Retrieval
1529
- dataset:
1530
- type: quora
1531
- name: MTEB QuoraRetrieval
1532
- config: default
1533
- split: test
1534
- revision: None
1535
- metrics:
1536
- - type: map_at_1
1537
- value: 69.753
1538
- - type: map_at_10
1539
- value: 83.56400000000001
1540
- - type: map_at_100
1541
- value: 84.19200000000001
1542
- - type: map_at_1000
1543
- value: 84.211
1544
- - type: map_at_3
1545
- value: 80.568
1546
- - type: map_at_5
1547
- value: 82.44500000000001
1548
- - type: mrr_at_1
1549
- value: 79.99000000000001
1550
- - type: mrr_at_10
1551
- value: 86.542
1552
- - type: mrr_at_100
1553
- value: 86.655
1554
- - type: mrr_at_1000
1555
- value: 86.656
1556
- - type: mrr_at_3
1557
- value: 85.505
1558
- - type: mrr_at_5
1559
- value: 86.21
1560
- - type: ndcg_at_1
1561
- value: 79.99000000000001
1562
- - type: ndcg_at_10
1563
- value: 87.449
1564
- - type: ndcg_at_100
1565
- value: 88.739
1566
- - type: ndcg_at_1000
1567
- value: 88.87
1568
- - type: ndcg_at_3
1569
- value: 84.418
1570
- - type: ndcg_at_5
1571
- value: 86.09599999999999
1572
- - type: precision_at_1
1573
- value: 79.99000000000001
1574
- - type: precision_at_10
1575
- value: 13.236999999999998
1576
- - type: precision_at_100
1577
- value: 1.516
1578
- - type: precision_at_1000
1579
- value: 0.156
1580
- - type: precision_at_3
1581
- value: 36.736999999999995
1582
- - type: precision_at_5
1583
- value: 24.227999999999998
1584
- - type: recall_at_1
1585
- value: 69.753
1586
- - type: recall_at_10
1587
- value: 94.967
1588
- - type: recall_at_100
1589
- value: 99.378
1590
- - type: recall_at_1000
1591
- value: 99.953
1592
- - type: recall_at_3
1593
- value: 86.408
1594
- - type: recall_at_5
1595
- value: 91.03
1596
- - task:
1597
- type: Retrieval
1598
- dataset:
1599
- type: scidocs
1600
- name: MTEB SCIDOCS
1601
- config: default
1602
- split: test
1603
- revision: None
1604
- metrics:
1605
- - type: map_at_1
1606
- value: 3.8080000000000003
1607
- - type: map_at_10
1608
- value: 9.222
1609
- - type: map_at_100
1610
- value: 10.779
1611
- - type: map_at_1000
1612
- value: 11.027000000000001
1613
- - type: map_at_3
1614
- value: 6.729
1615
- - type: map_at_5
1616
- value: 7.872999999999999
1617
- - type: mrr_at_1
1618
- value: 18.7
1619
- - type: mrr_at_10
1620
- value: 28.084999999999997
1621
- - type: mrr_at_100
1622
- value: 29.134999999999998
1623
- - type: mrr_at_1000
1624
- value: 29.214000000000002
1625
- - type: mrr_at_3
1626
- value: 24.917
1627
- - type: mrr_at_5
1628
- value: 26.651999999999997
1629
- - type: ndcg_at_1
1630
- value: 18.7
1631
- - type: ndcg_at_10
1632
- value: 15.969
1633
- - type: ndcg_at_100
1634
- value: 22.535
1635
- - type: ndcg_at_1000
1636
- value: 27.337
1637
- - type: ndcg_at_3
1638
- value: 15.112
1639
- - type: ndcg_at_5
1640
- value: 13.089
1641
- - type: precision_at_1
1642
- value: 18.7
1643
- - type: precision_at_10
1644
- value: 8.32
1645
- - type: precision_at_100
1646
- value: 1.786
1647
- - type: precision_at_1000
1648
- value: 0.293
1649
- - type: precision_at_3
1650
- value: 14.099999999999998
1651
- - type: precision_at_5
1652
- value: 11.42
1653
- - type: recall_at_1
1654
- value: 3.8080000000000003
1655
- - type: recall_at_10
1656
- value: 16.872
1657
- - type: recall_at_100
1658
- value: 36.235
1659
- - type: recall_at_1000
1660
- value: 59.587
1661
- - type: recall_at_3
1662
- value: 8.583
1663
- - type: recall_at_5
1664
- value: 11.562999999999999
1665
- - task:
1666
- type: Retrieval
1667
- dataset:
1668
- type: scifact
1669
- name: MTEB SciFact
1670
- config: default
1671
- split: test
1672
- revision: None
1673
- metrics:
1674
- - type: map_at_1
1675
- value: 53.994
1676
- - type: map_at_10
1677
- value: 63.56
1678
- - type: map_at_100
1679
- value: 64.247
1680
- - type: map_at_1000
1681
- value: 64.275
1682
- - type: map_at_3
1683
- value: 61.23499999999999
1684
- - type: map_at_5
1685
- value: 62.638000000000005
1686
- - type: mrr_at_1
1687
- value: 57.333
1688
- - type: mrr_at_10
1689
- value: 65.23299999999999
1690
- - type: mrr_at_100
1691
- value: 65.762
1692
- - type: mrr_at_1000
1693
- value: 65.78699999999999
1694
- - type: mrr_at_3
1695
- value: 63.556000000000004
1696
- - type: mrr_at_5
1697
- value: 64.572
1698
- - type: ndcg_at_1
1699
- value: 57.333
1700
- - type: ndcg_at_10
1701
- value: 67.88300000000001
1702
- - type: ndcg_at_100
1703
- value: 70.99
1704
- - type: ndcg_at_1000
1705
- value: 71.66
1706
- - type: ndcg_at_3
1707
- value: 64.16
1708
- - type: ndcg_at_5
1709
- value: 66.042
1710
- - type: precision_at_1
1711
- value: 57.333
1712
- - type: precision_at_10
1713
- value: 8.967
1714
- - type: precision_at_100
1715
- value: 1.06
1716
- - type: precision_at_1000
1717
- value: 0.11199999999999999
1718
- - type: precision_at_3
1719
- value: 25.222
1720
- - type: precision_at_5
1721
- value: 16.467000000000002
1722
- - type: recall_at_1
1723
- value: 53.994
1724
- - type: recall_at_10
1725
- value: 79.289
1726
- - type: recall_at_100
1727
- value: 93.533
1728
- - type: recall_at_1000
1729
- value: 98.667
1730
- - type: recall_at_3
1731
- value: 69.267
1732
- - type: recall_at_5
1733
- value: 74.128
1734
- - task:
1735
- type: Retrieval
1736
- dataset:
1737
- type: trec-covid
1738
- name: MTEB TRECCOVID
1739
- config: default
1740
- split: test
1741
- revision: None
1742
- metrics:
1743
- - type: map_at_1
1744
- value: 0.212
1745
- - type: map_at_10
1746
- value: 1.925
1747
- - type: map_at_100
1748
- value: 9.235
1749
- - type: map_at_1000
1750
- value: 22.111
1751
- - type: map_at_3
1752
- value: 0.626
1753
- - type: map_at_5
1754
- value: 1.031
1755
- - type: mrr_at_1
1756
- value: 82.0
1757
- - type: mrr_at_10
1758
- value: 90.5
1759
- - type: mrr_at_100
1760
- value: 90.5
1761
- - type: mrr_at_1000
1762
- value: 90.5
1763
- - type: mrr_at_3
1764
- value: 90.0
1765
- - type: mrr_at_5
1766
- value: 90.5
1767
- - type: ndcg_at_1
1768
- value: 75.0
1769
- - type: ndcg_at_10
1770
- value: 75.851
1771
- - type: ndcg_at_100
1772
- value: 53.190000000000005
1773
- - type: ndcg_at_1000
1774
- value: 45.507999999999996
1775
- - type: ndcg_at_3
1776
- value: 80.19500000000001
1777
- - type: ndcg_at_5
1778
- value: 78.448
1779
- - type: precision_at_1
1780
- value: 82.0
1781
- - type: precision_at_10
1782
- value: 82.6
1783
- - type: precision_at_100
1784
- value: 54.48
1785
- - type: precision_at_1000
1786
- value: 20.785999999999998
1787
- - type: precision_at_3
1788
- value: 86.667
1789
- - type: precision_at_5
1790
- value: 85.2
1791
- - type: recall_at_1
1792
- value: 0.212
1793
- - type: recall_at_10
1794
- value: 2.13
1795
- - type: recall_at_100
1796
- value: 12.152000000000001
1797
- - type: recall_at_1000
1798
- value: 42.403
1799
- - type: recall_at_3
1800
- value: 0.6689999999999999
1801
- - type: recall_at_5
1802
- value: 1.121
1803
- - task:
1804
- type: Retrieval
1805
- dataset:
1806
- type: webis-touche2020
1807
- name: MTEB Touche2020
1808
- config: default
1809
- split: test
1810
- revision: None
1811
- metrics:
1812
- - type: map_at_1
1813
- value: 2.701
1814
- - type: map_at_10
1815
- value: 10.488999999999999
1816
- - type: map_at_100
1817
- value: 17.258000000000003
1818
- - type: map_at_1000
1819
- value: 18.797
1820
- - type: map_at_3
1821
- value: 5.563
1822
- - type: map_at_5
1823
- value: 7.268
1824
- - type: mrr_at_1
1825
- value: 30.612000000000002
1826
- - type: mrr_at_10
1827
- value: 48.197
1828
- - type: mrr_at_100
1829
- value: 48.762
1830
- - type: mrr_at_1000
1831
- value: 48.762
1832
- - type: mrr_at_3
1833
- value: 44.218
1834
- - type: mrr_at_5
1835
- value: 46.666999999999994
1836
- - type: ndcg_at_1
1837
- value: 28.571
1838
- - type: ndcg_at_10
1839
- value: 26.512
1840
- - type: ndcg_at_100
1841
- value: 38.356
1842
- - type: ndcg_at_1000
1843
- value: 49.57
1844
- - type: ndcg_at_3
1845
- value: 27.704
1846
- - type: ndcg_at_5
1847
- value: 27.342
1848
- - type: precision_at_1
1849
- value: 30.612000000000002
1850
- - type: precision_at_10
1851
- value: 24.285999999999998
1852
- - type: precision_at_100
1853
- value: 8.0
1854
- - type: precision_at_1000
1855
- value: 1.541
1856
- - type: precision_at_3
1857
- value: 29.252
1858
- - type: precision_at_5
1859
- value: 27.346999999999998
1860
- - type: recall_at_1
1861
- value: 2.701
1862
- - type: recall_at_10
1863
- value: 17.197000000000003
1864
- - type: recall_at_100
1865
- value: 49.061
1866
- - type: recall_at_1000
1867
- value: 82.82300000000001
1868
- - type: recall_at_3
1869
- value: 6.687
1870
- - type: recall_at_5
1871
- value: 9.868
1872
  ---
1873
  DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON:
1874
  Diverse Augmentation Towards Generalizable Dense Retrieval](https://arxiv.org/abs/2302.07452).
 
1
  ---
2
  tags:
3
  - feature-extraction
 
4
  pipeline_tag: feature-extraction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
  DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON:
7
  Diverse Augmentation Towards Generalizable Dense Retrieval](https://arxiv.org/abs/2302.07452).