unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur

Speech-to-speech translation model from fairseq S2UT (paper/code):

  • Spanish-English
  • Trained on mTEDx, CoVoST 2, Europarl-ST and VoxPopuli

Usage

import json
import os
from pathlib import Path

import IPython.display as ipd
from fairseq import hub_utils
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.speech_to_text.hub_interface import S2THubInterface
from fairseq.models.text_to_speech import CodeHiFiGANVocoder
from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface

from huggingface_hub import snapshot_download
import torchaudio

cache_dir = os.getenv("HUGGINGFACE_HUB_CACHE")

#models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
#     "facebook/xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022",
#     arg_overrides={"config_yaml": "config.yaml", "task": "speech_to_text"},
#     cache_dir=cache_dir,
# )
# model = models[0].cpu()
# cfg["task"].cpu = True
# generator = task.build_generator([model], cfg)


# # requires 16000Hz mono channel audio
# audio, _ = torchaudio.load("/Users/lpw/git/api-inference-community/docker_images/fairseq/tests/samples/sample2.flac")

# sample = S2THubInterface.get_model_input(task, audio)
# unit = S2THubInterface.get_prediction(task, model, generator, sample)

# speech synthesis           
library_name = "fairseq"
cache_dir = (
    cache_dir or (Path.home() / ".cache" / library_name).as_posix()
)
cache_dir = snapshot_download(
    f"facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur", cache_dir=cache_dir, library_name=library_name
)

x = hub_utils.from_pretrained(
    cache_dir,
    "model.pt",
    ".",
    archive_map=CodeHiFiGANVocoder.hub_models(),
    config_yaml="config.json",
    fp16=False,
    is_vocoder=True,
)

with open(f"{x['args']['data']}/config.json") as f:
    vocoder_cfg = json.load(f)
assert (
    len(x["args"]["model_path"]) == 1
), "Too many vocoder models in the input"

vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg)
tts_model = VocoderHubInterface(vocoder_cfg, vocoder)

tts_sample = tts_model.get_model_input(unit)
wav, sr = tts_model.get_prediction(tts_sample)

ipd.Audio(wav, rate=sr)
Downloads last month
98
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur

Spaces using facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur 13