Rock Paper Scissors Object Detection Model
Created by FRC Team 578
Description
This YOLO v10 small model was trained for educational purposes only. It is used to illustrate to students how an object detection model works. It was trained for 10 epochs.
Training Data
The model trained on 100 images found online. No augmentation of the images were preformed.
Metrics
Class | Images | Instances | Box | R | mAP50 | mAP50-95 |
---|---|---|---|---|---|---|
all | 100 | 260 | 0.917 | 0.795 | 0.925 | 0.735 |
rock | 69 | 84 | 0.875 | 0.835 | 0.924 | 0.728 |
paper | 56 | 65 | 0.899 | 0.815 | 0.909 | 0.721 |
scissors | 88 | 111 | 0.976 | 0.736 | 0.943 | 0.755 |
How to Use
pip install ultralytics
pip install huggingface_hub
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
from matplotlib import pyplot as plt
# Load the weights from our repository
model_path = hf_hub_download(
local_dir=".",
repo_id="fairportrobotics/rock-paper-scissors",
filename="model.pt"
)
model = YOLO(model_path)
# Load a test image
sample_path = hf_hub_download(
local_dir=".",
repo_id="fairportrobotics/rock-paper-scissors",
filename="sample.jpg"
)
# Do the predictions
res = model.predict(
source=sample_path,
project='.',
name='detected',
exist_ok=True,
save=True,
show=False,
show_labels=True,
show_conf=True,
conf=0.5
)
plt.figure(figsize=(15,10))
plt.imshow(plt.imread('detected/sample.jpg'))
plt.show()
As you can see the model isn't perfect ;)
Use the model with your webcam
from ultralytics import YOLO
import cv2
import math
from huggingface_hub import hf_hub_download
# start the webcam
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
# Load the weights from our repository
model_path = hf_hub_download(
local_dir=".",
repo_id="fairportrobotics/rock-paper-scissors",
filename="model.pt"
)
model = YOLO(model_path)
# object classes
classNames = ["rock", "paper", "scissors"]
while True:
success, img = cap.read()
results = model(img, stream=True)
# coordinates
for r in results:
boxes = r.boxes
for box in boxes:
# bounding box
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) # convert to int values
# put box in cam
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 255), 3)
# confidence
confidence = math.ceil((box.conf[0]*100))/100
# class name
cls = int(box.cls[0])
# object details
org = [x1, y1]
font = cv2.FONT_HERSHEY_SIMPLEX
fontScale = 1
color = (255, 0, 0)
thickness = 2
cv2.putText(img, classNames[cls] + " " + str(round(confidence,2)), org, font, fontScale, color, thickness)
cv2.imshow('Webcam', img)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
- Downloads last month
- 6
Inference API (serverless) does not yet support ultralytics models for this pipeline type.