LayoutLM for Invoices
This is a fine-tuned version of the multi-modal LayoutLM model for the task of question answering on invoices and other documents. It has been fine-tuned on a proprietary dataset of invoices as well as both SQuAD2.0 and DocVQA for general comprehension.
Non-consecutive tokens
Unlike other QA models, which can only extract consecutive tokens (because they predict the start and end of a sequence), this model can predict longer-range, non-consecutive sequences with an additional classifier head. For example, QA models often encounter this failure mode:
Before
After
However this model is able to predict non-consecutive tokens and therefore the address correctly:
Getting started with the model
The best way to use this model is via DocQuery.
About us
This model was created by the team at Impira.
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.