|
--- |
|
base_model: nlpie/distil-clinicalbert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: distil-clinicalbert-medical-text-classification |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distil-clinicalbert-medical-text-classification |
|
|
|
This model is a fine-tuned version of [nlpie/distil-clinicalbert](https://huggingface.co/nlpie/distil-clinicalbert) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8719 |
|
- Accuracy: 0.266 |
|
- Precision: 0.2357 |
|
- Recall: 0.266 |
|
- F1: 0.2427 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 2.5512 | 1.0 | 250 | 2.6302 | 0.335 | 0.1402 | 0.335 | 0.1911 | |
|
| 2.0609 | 2.0 | 500 | 2.1857 | 0.357 | 0.2240 | 0.357 | 0.2474 | |
|
| 1.9056 | 3.0 | 750 | 1.8964 | 0.321 | 0.2773 | 0.321 | 0.2812 | |
|
| 1.5646 | 4.0 | 1000 | 1.8117 | 0.323 | 0.3183 | 0.323 | 0.2949 | |
|
| 1.3789 | 5.0 | 1250 | 1.8869 | 0.302 | 0.2643 | 0.302 | 0.2701 | |
|
| 1.3189 | 6.0 | 1500 | 1.8719 | 0.266 | 0.2357 | 0.266 | 0.2427 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|