BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("felipehsilveira/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Our products compete with other commercially available products based primarily on efficacy, safety, tolerability, acceptance by doctors, ease of patient compliance, ease of use, price, insurance and other reimbursement coverage, distribution and marketing.',
"What are the main factors influencing competition for the company's products?",
'What was the impact of restructuring charges in 2022 on the company and what changes occurred in 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6986 |
cosine_accuracy@3 | 0.83 |
cosine_accuracy@5 | 0.88 |
cosine_accuracy@10 | 0.9257 |
cosine_precision@1 | 0.6986 |
cosine_precision@3 | 0.2767 |
cosine_precision@5 | 0.176 |
cosine_precision@10 | 0.0926 |
cosine_recall@1 | 0.6986 |
cosine_recall@3 | 0.83 |
cosine_recall@5 | 0.88 |
cosine_recall@10 | 0.9257 |
cosine_ndcg@10 | 0.8142 |
cosine_mrr@10 | 0.7782 |
cosine_map@100 | 0.7808 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7014 |
cosine_accuracy@3 | 0.8329 |
cosine_accuracy@5 | 0.8857 |
cosine_accuracy@10 | 0.9229 |
cosine_precision@1 | 0.7014 |
cosine_precision@3 | 0.2776 |
cosine_precision@5 | 0.1771 |
cosine_precision@10 | 0.0923 |
cosine_recall@1 | 0.7014 |
cosine_recall@3 | 0.8329 |
cosine_recall@5 | 0.8857 |
cosine_recall@10 | 0.9229 |
cosine_ndcg@10 | 0.8134 |
cosine_mrr@10 | 0.7781 |
cosine_map@100 | 0.7809 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7 |
cosine_accuracy@3 | 0.84 |
cosine_accuracy@5 | 0.8714 |
cosine_accuracy@10 | 0.9086 |
cosine_precision@1 | 0.7 |
cosine_precision@3 | 0.28 |
cosine_precision@5 | 0.1743 |
cosine_precision@10 | 0.0909 |
cosine_recall@1 | 0.7 |
cosine_recall@3 | 0.84 |
cosine_recall@5 | 0.8714 |
cosine_recall@10 | 0.9086 |
cosine_ndcg@10 | 0.8077 |
cosine_mrr@10 | 0.775 |
cosine_map@100 | 0.7785 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6943 |
cosine_accuracy@3 | 0.82 |
cosine_accuracy@5 | 0.8557 |
cosine_accuracy@10 | 0.9029 |
cosine_precision@1 | 0.6943 |
cosine_precision@3 | 0.2733 |
cosine_precision@5 | 0.1711 |
cosine_precision@10 | 0.0903 |
cosine_recall@1 | 0.6943 |
cosine_recall@3 | 0.82 |
cosine_recall@5 | 0.8557 |
cosine_recall@10 | 0.9029 |
cosine_ndcg@10 | 0.7991 |
cosine_mrr@10 | 0.7659 |
cosine_map@100 | 0.7697 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6614 |
cosine_accuracy@3 | 0.7843 |
cosine_accuracy@5 | 0.8271 |
cosine_accuracy@10 | 0.8886 |
cosine_precision@1 | 0.6614 |
cosine_precision@3 | 0.2614 |
cosine_precision@5 | 0.1654 |
cosine_precision@10 | 0.0889 |
cosine_recall@1 | 0.6614 |
cosine_recall@3 | 0.7843 |
cosine_recall@5 | 0.8271 |
cosine_recall@10 | 0.8886 |
cosine_ndcg@10 | 0.7731 |
cosine_mrr@10 | 0.7366 |
cosine_map@100 | 0.7404 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 6 tokens
- mean: 45.44 tokens
- max: 301 tokens
- min: 7 tokens
- mean: 20.3 tokens
- max: 51 tokens
- Samples:
positive anchor The Centers for Medicare & Medicaid Services issued a final rule in October 2023 for the calendar year 2024, estimating a productivity-adjusted market basket increase of 2.1% in average reimbursement to ESRD facilities.
What is the projected impact on average reimbursement to ESRD facilities in 2024 due to the final rule issued by CMS?
Company Adjusted EBIT Margin is derived by dividing the Company adjusted EBIT by Company revenue, which is a non-GAAP measure useful for evaluating the company's operating results.
How is the Company Adjusted EBIT Margin calculated?
The provision for credit losses was $4 million for the year ended December 31, 202 serviLists of account holders responsible for and the state of the economy, our credit standards, our risk assessments, and the judgment of our employees responsible for granting credit.
What factors influence the provision for credit losses at Las Vegas Sands Corp.?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5176 | - | - | - | - | - |
0.9746 | 12 | - | 0.7500 | 0.7642 | 0.7680 | 0.7079 | 0.7708 |
1.6244 | 20 | 0.6868 | - | - | - | - | - |
1.9492 | 24 | - | 0.7657 | 0.7746 | 0.7784 | 0.7323 | 0.7816 |
2.4365 | 30 | 0.4738 | - | - | - | - | - |
2.9239 | 36 | - | 0.7691 | 0.7780 | 0.7790 | 0.7402 | 0.7796 |
3.2487 | 40 | 0.3934 | - | - | - | - | - |
3.8985 | 48 | - | 0.7697 | 0.7785 | 0.7809 | 0.7404 | 0.7808 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for felipehsilveira/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.699
- Cosine Accuracy@3 on dim 768self-reported0.830
- Cosine Accuracy@5 on dim 768self-reported0.880
- Cosine Accuracy@10 on dim 768self-reported0.926
- Cosine Precision@1 on dim 768self-reported0.699
- Cosine Precision@3 on dim 768self-reported0.277
- Cosine Precision@5 on dim 768self-reported0.176
- Cosine Precision@10 on dim 768self-reported0.093
- Cosine Recall@1 on dim 768self-reported0.699
- Cosine Recall@3 on dim 768self-reported0.830